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Given the deep connections between twistors, the 
conformal group and conformal geometry it natural to 

ask if there is a twistor description of conformal 
higher-spin theories. 



Main idea of twistor theory is to relate differential field 
equations in space-time to holomorphic structures on a 

complex manifold 



Starting point is the twistor equation

• A, A’ = 0,1 are two-component spinor indices.

•                       is the covariant derivative where we make use of the 
bi-spinor notation for vectors. The metric is:

• Equation is conformally invariant. Under
we have                  so that 

• Only consistent for:                             where

• The space of solutions form a four dimensional vector space over the 
complex numbers. 
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In Minkowski space the twistor equation has non-trivial solutions:

•                   are constant spinor fields defining a four complex- 
dimensional vector space of solutions called twistor space,                . 

• We denote elements of this solution space          and we can represent 
them in a non-conformally invariant fashion by the pair of fields

• We can similarly define dual twistors as solutions of

Flat Twistor Space

!

A =
�
!

A + ix

AA0 �
⇡A0

⇡A0 =
�
⇡A0

�
!A,

�
⇡A0

W↵

W↵ = (⇡A0 ,!A)

T↵ ' C4

Z↵ = (µA0
,�A)

r(A0

A µB0) = 0



We identify points in        with complex projective lines in      via the 
incidence relation

Twistor Theory
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One application of twistor theory gives an identification between complex 
data on Twistor space and solutions of linear massless equations [Hitchen ‘80, 
Eastwood et al ’81] 

via the Penrose transform

where                                           is the volume form on        . 
Can prove [Hitchen ‘80,  Atiyah ’79] 
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Self-dual Actions
Generalized Weyl                  curvature tensors can be decomposed as:

For YM and Weyl Gravity (and linearized HS)

Schematically we can write this as

or introducing Lagrange multiplier

which has E.o.M.: 

Provides an expansion about self-dual sector: 
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Form curved twistor spaces     by deforming the complex structure

where the deformation is a (1,0)-vector valued (0,1)-form 

To be well-defined on projective space,       ,      must have homogeneity 1 
under coordinate rescalings.  Also has the invariance 

 The condition for the deformation to give rise to an integrable complex 
structures is
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Write an action, [Berkovits/Witten ’04], by introducing a Lagrange multiplier 
field
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Write an action, [Berkovits/Witten ’04], by introducing a Lagrange multiplier 
field
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Write an action, [Berkovits/Witten ’04], by introducing a Lagrange multiplier 
field
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Write an action, [Berkovits/Witten ’04], by introducing a Lagrange multiplier 
field

(0,1)-form with homogeneity -5
satisfying constraint g↵Z
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Write an action, [Berkovits/Witten ’04], by introducing a Lagrange multiplier 
field

Equation of motion for tensor field  

Describes a helicity-(-2) particle moving in a self-dual background. 
Corresponds to self-dual sector of  Weyl gravity
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Write an action, [Berkovits/Witten ’04], by introducing a Lagrange multiplier 
field

Equation of motion for tensor field  

Describes a helicity-(-2) particle moving in a self-dual background. 
Corresponds to self-dual sector of  Weyl gravity

To include the anti-self-dual interactions we add term

This is equivalent to usual Weyl action up to topological terms.
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Write an action, [Berkovits/Witten ’04], by introducing a Lagrange multiplier 
field

Equation of motion for tensor field  

Describes a helicity-(-2) particle moving in a self-dual background. 
Corresponds to self-dual sector of  Weyl gravity

To include the anti-self-dual interactions we add twistor term constructed 
by using the Penrose transform involving the deformation  which gives rise 
to a MHV vertex like expansion. 

Can be used to very efficiently calculate all Einstein gravity MHV scattering 
amplitude.
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Following Maldacena’s argument for truncating conformal gravity to 
Einstein gravity with a non-zero cosmological constant,  Adamo and Mason 
gave a twistor prescription for extracting EG amplitudes by restricting the 
fields to a “Unitary” sector :

Use infinity twistor for AdS space, 

plane-wave wave-functions for    and     and produces AdS analogue of 
scattering amplitudes which in the flat limit reproduce Hodges formula for 
MHV amplitudes after accounting for overall powers of    . 

Can we generalise this to Higher Spin Fields?
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Consider deformations of Dolbeault operator for a curved twistor 
space corresponding to an arbitrary self-dual space time 

Higher Spin Deformations
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Consider deformations of Dolbeault operator for a curved twistor 
space corresponding to an arbitrary self-dual space time

using a multi-index notation.

Higher Spin Deformations
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Consider deformations of Dolbeault operator for a curved twistor 
space corresponding to an arbitrary self-dual space time

using a multi-index notation.

Higher Spin Deformations
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Consider deformations of Dolbeault operator for a curved twistor 
space corresponding to an arbitrary self-dual space time

using a multi-index notation. 

We impose the equation of motion 

and can write an action function by introducing a Lagrange multiplier 
field 

Higher Spin Deformations

@̄f = @̄ + f↵I ⌦ @↵I Spin-(|I|+1)

(@̄f↵I + f�I ^ @�If
↵I ) = 0 6= @̄2 = 0

SS.D. =

Z

PT
⌦ ^ g↵I ^ (@̄f↵I + f�I ^ @�If

↵I )



Consider deformations of Dolbeault operator for a curved twistor 
space corresponding to an arbitrary self-dual space time

using a multi-index notation. 

We impose the equation of motion 

and can write an action function by introducing a Lagrange multiplier 
field 
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At a linearized level the deformation and the Lagrange multiplier define 
elements of cohomology groups

Via the Penrose transform for homogeneous tensors [Eastwood, Mason] we 
have 

Linearized Deformations
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At a linearized level the deformation and the Lagrange multiplier define 
elements of cohomology groups

Straightforward to calculate flat-space on-shell spectrum á la Witten & 
Berkovits : e.g. spin-3 
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There is a nice trick for calculating conserved charges in a linearised 
spin-n/2 massless theory. Given a field satisfying 

and a solution of the twistor equation

we can form a solution to Maxwell equation 

and so a complex charge

Hence for every solution of the twistor equation we find two conserved 
charges (half are actually zero). 
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For conformal higher-spin theory we can do a similar construction.

Given a conformal higher-spin field 
we can use a symmetric trace-free     -twistor

to form a solution of the Maxwell equation

Each charge corresponds to a solution of the twistor equation.  Easy to 
count in flat-space that there are      

This is essentially the number of conformal Killing tensors and matches 
with the calculation of Eastwood. Here it is easy to generalise to 
arbitrary self-dual backgrounds. 
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At linearized level twistor action appears to describe conformal higher-
spin theory.

                              What about non-linear terms?



We define a deformed Dolbeault operator involving all spins

then demand that each term vanishes

Lower-spin fields source higher-spin fields and can’t truncate to just e.g. 
spin-3 fields. Self-dual action is simply the sum of constraints. 

Defines a holomorphic structure on the infinite jet bundle of symmetric 
product of dual tangent bundles of twistor space.

Can straightforwardly write an action by introducing Lagrange multiplier 
fields.
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On-shell flat space spectrum forms a non-diagonalizable representation 
of Poincaré algebra. We can identify a “unitary” sub-sector analogous to 
EG in CG

Choose AdS background, evaluate action on plane-wave solutions to find 
the AdS analogue of 3-pt MHV-bar “amplitudes”

Thus accounting for powers of      we reproduce the unique flat space 
answer consistent with Poincaré symmetry and helicity constraints. 

Unitary Self-Interactions
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ASD interactions
So far we have only considered the self-dual sector to motivate the 
interactions consider the quadratic case

                                                         

Sspin�n =

Z
d

4
xG

AI�AI � �

Z
d

4
xG

AI
GAI

�1 �2

x

AA0

P.T.

P.T.

M

It is convenient to picture real, Euclidean space-times. In this case        is 
fibered over the space-time        thus we see the action corresponds to a 
fibre wise product of twistor spaces              

M
PT

PT⇥M PT



ASD interactions

We can use the twistor formulation to propose a full ASD action but it’s 
rather involved. The interaction term for arbitrary negative helicity CHS 
fields on a conformal gravity background is relatively pleasing

and can be expanded to compute arbitrary (-s, -s, 2, 2, 2, ...) MHV 
amplitudes in a flat-space limit:

                                                         where

However here it is defined for arbitrary self-dual backgrounds and so 
provides a general quadratic coupling of  CHS fields to conformal gravity. 

S(2)
int [f

(2), g] =

Z

PT ⇥MPT
⌦ ^ ⌦0

1X

I=0

Z↵I Z 0�I g�I (Z) g↵I (Z
0)

lim
⇤!0

fMn,0

⇤
/ �4(P )

h12i2s+2

h1ii2 h2ii2
���12i

12i

�� ,

�ij =
[i j]

hi ji , for i 6= j

�ii = �
X

j 6=i

[i j]

hi ji
h⇠ ji2

h⇠ ii2 .



Conclusions/Outlook
• Described a twistor action to describe higher-spin fields on arbitrary 

self-dual backgrounds. 

• Flat space-time action/spectrum is that of conformal higher-spin theory 
and produces linearised charges. 

• Interactions involve one copy of all spins s>0. Have interpretation of 
holomorphic structure for infinite jet bundle of homogeneous tensors.

• Identified a “unitary” sub-sector, analogues of EG inside CG, which can 
be used to reproduce MHV and MHV-bar 3-pt amplitudes up powers of 
cosmological constant. Can be used to calculate n-point (-s, -s, 2, 2, 2, ...) 
MHV amplitude.  

• What is the full non-linear interacting theory. CHS theory of Segal? 
What is the “unitary” subsector?

• Can we calculate something interesting? All MHV “amplitudes”? 
Correlation functions? Partition functions?

• Classical solutions? Instantons? Black Holes?


