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Higher derivatives in HS interactions

HS interactions contain higher derivatives Bengtsson, Bengtsson, Brink (1983)

Nonanaliticity in Λ via dimensionless combination Λ−
1
2 ∂
∂x (Fradkin, MV 1987)

By a seemingly local field redefinition it is possible to get rid of currents

from HS field equations including the stress tensor (Prokushkin, MV 1998)

φ→ φ′ = φ+
∑
n
anm(ρD)nφ (ρD)mφ+ . . . ,

ρ is the AdS radius, D is the space-time covariant derivative.

The problem: find restrictions on anm distinguishing between truly

non-local and generalized local field redefinitions containing an infinite

number of terms but anm decreasing fast enough with n and m.

The problems in AdSd and Minkowski space are essentially different
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Locality versus Nonlocality

For a massive field equation

(� +m2)φ = 0

Greens function can be represented in the pseudolocal form

G = (� +m2)−1 = m−2
∞∑
n=0

(
−

�

m2

)n
Constant expansion coefficients imply nonlocality.

m2 is a counterpart of Λ for massless particles in AdS

The problem is to look for a class of field redefinitions which

• are closed under multiple application: form an algebra

• rule out obviously nonlocal field redefinitions like those resulting from

Greens functions
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Nonlinear HS equations

W(Z;Y ; k, k̄|x) = (d +W ) + S , W = dxnWn , S = θαSα + θ̄α̇S̄α̇ 1992

W ?W = i(θAθA + ηθαθαB ? k ? κ+ η̄θ̄α̇θ̄α̇B ? k̄ ? κ̄)

W ? B = B ?W , B = B(Z;Y ; k, k̄|x)

HS star product

(f ? g)(Z;Y ) =
1

(2π)4

∫
d4U d4V exp [iUAV

A] f(Z + U ;Y + U)g(Z − V ;Y + V )

κ = exp izαy
α , κ̄ = exp iz̄α̇ȳ

α̇

Massless fields

W(Z;Y ; k, k̄|x) =W(Z;Y ;−k,−k̄|x), B(Z;Y ; k, k̄|x) = −B(Z;Y ;−k,−k̄|x)

Topological fields

W(Z;Y ; k, k̄|x) = −W(Z;Y ;−k,−k̄|x), B(Z;Y ; k, k̄|x) = B(Z;Y ;−k,−k̄|x)
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Perturbative analysis

The standard vacuum solution is B = 0 and

W0 = dx +Q+W0(Y |x) , Q := θAZA

The space-time one-form W0(Y |x) solves the flatness equation

AdS : dxW0(Y |x) +W0(Y |x) ? W0(Y |x) = 0 .

The star-commutator with Q yields de Rham derivative in ZA

Q ? f(Z;Y )− (−1)degff(Z;Y ) ? Q = −2idZf(Z;Y ) , dZ = θA
∂

∂ZA

Standard homotopy formula:

dZg(θZ;Z;Y ) = f(θZ;Z;Y ) =⇒ g(θZ;Z;Y ) = ∂∗Zf + dZε+ g(0; 0;Y )

dZε: exact forms

g(0; 0;Y ): de Rham cohomology

Dynamical fields in de Rham cohomology:

C(Y ; k, k̄|x) = B(0;Y ; k, k̄|x) , ω(Y ; k, k̄|x) = W (0;Y ; k, k̄|x)
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Fields and Currents

Spin s is described by the 1-forms ω(y, ȳ|x) and 0-form C(y, ȳ|x) obeying

ω(µy, µȳ | x) = µ2(s−1)ω(y, ȳ | x) , C(µy, µ−1ȳ | x) = µ±2sC(y, ȳ | x)

Generalized Weyl tensors C(y,0|x) and C(0, ȳ|x) describe gauge invariant

combinations of derivatives of the gauge fields of spins s ≥ 1 and matter

fields of spins s = 0,1/2

C(y,0|x) and C(0, ȳ|x) are primaries of the Weyl module formed by C(y, ȳ|x)

Higher powers in y and ȳ for a given spin contain higher derivatives

Conserved currents J(Y1, Y2|x) are associated with the bilinears of C(Y |x)

J(Y1, Y2|x) := C(Y1|x)C̃(Y2|x) , C̃(y, ȳ|x) = C(−y, ȳ|x) .

As a consequence of the rank-one equation for C(Y |x), the current

J(Y1, Y2|x) obeys the rank-two equation Gelfond, MV (2003)

D̃2J(Y1, Y2|x) = 0 , D̃2 := DL−iλhαβ̇
(
y1αȳ1β̇−y2αȳ2β̇−

∂2

∂yα1∂ȳ1
β̇

+
∂2

∂yα2∂ȳ2
β̇

)
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Current deformation

Current deformation can be formulated as a linear system

Dω + L(w,C) + Γcur(w, J) = 0 ,

D̃C +Hcur(w, J) = 0 , D̃2J(Y1, Y2|x) = 0

L(w,C) := i

(
ηH

α̇β̇ ∂2

∂yα̇∂yβ̇
C̄(0, y|x) + η̄Hαβ ∂2

∂yα∂yβ
C(y,0|x)

)
Linear functionals Γ and H should obey the compatibility conditions

The freedom in Γcur(w, J) and Hcur(w, J) results from field redefinitions

ω → ω′ = ω + Ω(w, J) , C → C′ = C + Φ(J) .

Nontrivial Γcur(w, J) and Hcur(w, J) cannot be removed by a field

redefinition. Usual current interactions are nontrivial. Schematically,

J = J0 + ∆J ,

where ∆J is an improvement that can be removed by a field redefinition.

Concept of (non)triviality of the currents depends on the class of field

redefinitions
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Unfolded form of usual current interactions

For simplicity: 0-form sector Gelfond, MV (2010)

Hcur(w, J) =
1

4

∫ 1

0
dτ

∑
h1,h2,hJ

a(h1, h2, hJ)
∫

ds̄dt̄

(2π)2
exp i[s̄β̇ t̄

β̇]

h(y, τ s̄+ (1− τ)t̄)Jh1,h2,hJ
(τy,−(1− τ)y, ȳ + s̄, ȳ + t̄) + c.c. ,

h(u, ū) = hαα̇uαūα̇

Jh1,h2,hJ
is the projection of J to the helicities h1, h2, hJ.

Coefficients a(h1, h2, hJ) remain undetermined at this level.

Hcur(w, J) is local, containing a finite number of terms for any h1, h2, hJ.

Hcur(w, J) properly reproduces usual current interactions Gelfond, MV 2010
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Locality in the twistor variables

Technically, locality is due to the absence of integration over s and t.∫
dsdt

(2π)2
exp i[sβt

β]f(y + s, ȳ)g(y + t, ȳ) = f(y, ȳ) exp[−i
←−
∂ α
−→
∂ βε

αβ]g(y, ȳ)∫
ds̄dt̄

(2π)2
exp i[s̄β̇ t̄

β̇]f(y, ȳ + s̄)g(y, ȳ + t̄) = f(y, ȳ) exp[−i
←−
∂ α̇
−→
∂ β̇ε

α̇β̇]g(y, ȳ)

For given helicities carried by g and f , only a single term in the sum

contributes hence containing a finite number of derivatives.

When both integrations are present, the number of derivatives in y and

ȳ can be infinitely increased without affecting the helicities carried by

g and f , implying appearance of infinite tails of derivatives and hence

nonlocality.
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Current deformation from nonlinear equations

In the 0-form sector the deformation is

D0C + [ω ,C]∗+H(w, J) = 0 ,

J(y1, y2; ȳ1, ȳ2;K|x) = C(y1, ȳ1; k, k̄|x)C(y2, ȳ2; k, k̄|x)

A simple computation using the new technique Didenko, Misuna, MV 2015

H(w, J) = Hη(w, J) +Hη̄(w, J) ,

Hη(w, J) = −
i

2
η
∫
dSdT

(2π)4
exp iSAT

A
∫ 1

0
dτ

[h(s, τ ȳ − (1− τ)t̄)J(τs,−(1− τ)y + t; ȳ + s̄, ȳ + t̄; k, k̄)

−h(t, τ ȳ − (1− τ)s̄)J((1− τ)y + s, τt, ȳ + s̄; ȳ + t̄; k, k̄)] ∗ k

This deformation is not local, containing integrations over s, t and s̄, t̄.

Here h depends on ȳ instead of y in the local current deformation.

The two terms result from those in the commutator [W, B]∗
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Field redefinition

To reproduce standard current interactions we have to find a field

redefinition

C → C′(Y ; k, k̄|x) = C(Y ; k, k̄|x) + Φ(Y ; k, k̄|x)

with Φ linear in J bringing H(w, J) to Hcur(w, J)

First field redefinition

Φ1η(Y ; k, k̄|x) = η
∫
dSdT

(2π)4
exp iSAT

A
∫
dτi

3∏
i=1

θ(τi)δ
(

1−
3∑
i=1

τi

)
∂

∂τ3
J(τ3s+ τ1y, t− τ2y; ȳ + s̄, ȳ + t̄; k, k̄) ∗ k ,

gives

D0Φ1η(Y ; k, k̄|x) = −
i

2
η
∫
dSdT

(2π)4
exp i[SAT

A]
∫ 1

0
dτ[

h(s, τ ȳ − (1− τ)t̄)J(τs,−(1− τ)y + t, ȳ + s̄, ȳ + t̄)

−h(t, τ ȳ − (1− τ)s̄)J(s+ (1− τ)y, τt, ȳ + s̄, ȳ + t̄)

−ih(∂1 − ∂2, (1− τ)t̄+ τ s̄)J(τy,−(1− τ)y; ȳ + s̄, ȳ + t̄; k, k̄)
]
∗ k
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Reincarnation of y

The first two terms just give Hη(w, J). As a result,

Hη(w, J) = D0Φ1η(J) +H′η(w, J) ,

H′η(w, J) =
η

2

∫
ds̄dt̄

(2π)2
exp i[s̄α̇t̄

α̇]
∫ 1

0
dτh(∂1 − ∂2, (1− τ)t̄+ τ s̄)

J(τy,−(1− τ)y; ȳ + s̄, ȳ + t̄; k, k̄) ∗ k .

Being free of integration over s and t, H′η(w, J) is local but contains one

extra space-time derivative compared to Hcur. A local field redefinition

Φ2η =
i

2
η
∫

ds̄dt̄

(2π)2
exp i[s̄β̇ t̄

β̇]
∫ 1

0
dτJ(τy,−(1− τ)y; ȳ + s̄, ȳ + t̄; k, k̄) ∗ k

then yields the current deformation with

a(h1, h2, hJ) = η , ā(h1, h2, hJ) = η̄

Hη(w, J) = Hη cur(w, J) +D0(Φ1η + Φ2η)

Hη cur(w, J) =
η

4

∫
ds̄dt̄

(2π)2
exp i[s̄β̇ t̄

β̇]
∫ 1

0
dτh(y, τ s̄+ (1− τ)t̄)

J(τy, (τ − 1)y; ȳ + s̄, ȳ + t̄; k, k̄) ∗ k .
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The phase (in)dependence

An important consequence of the flip of chirality ȳ → y is that the current

contributions are proportional to ηη̄.

Spin-one example

R1(y, y|x) = i

(
ηH

α̇β̇ ∂2

∂yα̇∂yβ̇
C̄(0, y|x) + η̄Hαβ ∂2

∂yα∂yβ
C(y,0|x)

)
shift of the first and second terms are proportional to η̄ and η,

respectively.

Contribution to r.h.s. of the Maxwell equations is proportional to ηη̄.
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Comparison with previous attempts

For functions

f(y, ȳ|x) =
1

2i

∞∑
n,m=0

1

n!m!
yα1 . . . yαnȳβ̇1

. . . ȳβ̇mf
α1...αn,

β̇1...β̇m(x)

Star product is

(f ∗ g)fα(n) ,α̇(m) ∼
∞∑

p,q,k,l,s,r=0

δnp+qδ
m
k+l

1

p!q!k!l!s!t!
fα(p)γ(s) ,α̇(l)γ̇(t)gα(q)

γ(s)
,α̇(k)

˙γ(t) .

For the field redefinition induced by Φ1

Φ1η(Y ; k, k̄|x) =
∫
δ(1−

3∑
j=1

τi)
3∏
i=1

dτiθ(τi)δ(1−
3∑

j=1

τi)

∂

∂τ3
J(τ3s+ τ1y, t− τ2y; ȳ + s̄, ȳ + t̄; k, k̄) ∗ k

Integration over homotopy parameters τi over a triangle
∑3
j=1 τi = 1

softens the coefficients in Φ1η(Y ;K|x) compared to the star product

1

p!q!k
→

p

(p+ k + l + 2)!

∫ 1

0
dt1t

a1
1 . . .

∫ 1

0
dtpt

ap
p δ(

∑
i

ti − 1) =

∏p
i=1 ai!

(
∑p
i=1 ai + p− 1)!

implies ε = 1.
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HS holography

The phase ϕ of η should be related to the Chern-Simons coupling of the

boundary vector model. Does this fit the conclusion that the HS cubic

vertex is ϕ-independent?

Cj 1−j(y, ȳ|x, z) = z exp(yαȳ
α)T j 1−j(w, w̄|x, z) , wα = z1/2yα w̄α = z1/2ȳα

where T j 1−j are associated with the boundary currents.

The contribution of HS connections at the boundary cannot be

neglected except for the boundary conditions MV 2012

η̄T
j 1−j
+ (y, ȳ|x,0)− ηT1−j j

− (iȳ, iy|x,0) = 0 ,

where T+ and T− are the positive and negative helicity parts of T (y, ȳ|x).

In terms of remaining real boundary fields

jj(y, ȳ|x) :=
1

2

(
η̄T

j 1−j
+ (y, ȳ|x,0) + ηT

1−j j
− (iȳ, iy|x,0)

)
= η̄T

j 1−j
+ (y, ȳ|x,0)

the final result matches the form of the deformation of the HS current

algebra found by Maldacena and Zhiboedov

V = cos2(ϕ)Vb + sin2(ϕ)Vf +
1

2
sin(2ϕ)Vo
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Conclusion

Nonlinear HS equations properly reproduce the HS current interactions

with the ϕ-independent coupling constant.

Explicit form of the appropriate field redefinition suggests a proper form

of generalized local field redefinitions

Proper dependence on the phase parameter in the holographic duals of

the AdS4 HS theory is reproduced by the phase-independent vertex of

the bulk theory HS theory via phase-dependent boundary conditions.

Green light for the analysis of HS field equations

Invariant functionals

String-like HS theory

.

.

.
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Phase dependence via boundary conditions

The contribution of HS connections at the boundary cannot be ne-

glected except for the boundary conditions MV 2012

η̄T
j 1−j
+ (y, ȳ|x,0)− ηT1−j j

− (iȳ, iy|x,0) = 0 ,

where T+ and T− are the positive and negative helicity parts of T (y, ȳ|x).

Upon imposing boundary conditions, remaining real boundary fields are

jj(y, ȳ|x) :=
1

2

(
η̄T

j 1−j
+ (y, ȳ|x,0) + ηT

1−j j
− (iȳ, iy|x,0)

)
= η̄T

j 1−j
+ (y, ȳ|x,0) .

Independence of the bulk HS vertex on ϕ implies that the boundary

vertex has the structure

V =
∑

i,j=1,2

(aijT
i1−i
+ T

j 1−j
+ + bijT

i1−i
− T

j 1−j
− + eijT

i1−i
− T

j 1−j
+ ) ,

where aij, bij and eij are some ϕ-independent coefficients built from

components of the boundary HS connections and background fields.
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In terms of real ϕ-independent currents V reads

V =
1

ηη̄

∑
i,j=1,2

(exp 2iϕ aijj
i1−i
+ j

j 1−j
+ + exp−2iϕ bijj

i1−i
− j

j 1−j
− + eijj

i1−i
− j

j 1−j
+ ) .

Manifest dependence on ϕ identifies the parity even boson (ϕ = 0) vertex

V+ and fermion (ϕ = π/2) vertex V−

V± =
1

ηη̄

∑
i,j=1,2

(±aijji1−i
+ j

j 1−j
+ ± bijj

i1−i
− j

j 1−j
− + eijj

i1−i
− j

j 1−j
+ ) ,

Since parity transformation exchanges the positive and negative helici-

ties, the remaining parity-odd vertex is

Vo =
i

ηη̄

∑
i,j=1,2

(aijj
i1−i
+ j

j 1−j
+ − bijj

i1−i
− j

j 1−j
− ) .

This gives the following formula matching the form of the deformation

of the HS current algebra found by Maldacena and Zhiboedov

V = cos2(ϕ)Vb + sin2(ϕ)Vf +
1

2
sin(2ϕ)Vo ,
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