Presymplectic structures and intrinsic Lagrangians

Maxim Grigoriev

Based on:

M.G., to appear

M.G., A. Verbovetsky, to appear

K. Alkalaev, M.G. 2013

Also:

M.G. 2012

May 31, 2016, HSTH-4, LPI, Moscow

Motivations

- Lagrangians (or their substitutes) are inevitable for quantization
- Existence of a Lagranian formulation is often considered as a selection criterium
- Analysis becomes problematic once auxiliary fields are in the game.
 Ex.: unfolded formulation of HS theores etc.
- Lack of an invariant understanding of the structures underlying Lagrangian formulation

Jet space

Space-time coordinates (independent variables): x^a , a = 1, ..., n. Fields (dependent variable) ϕ^i .

 $J^0: x^a, \phi^i, J^1: x^a, \phi^i, \phi^i_a, J^2: x^a, \phi^i, \phi^i_a, \phi^i_a, \phi^i_a, \dots$ Projections:

$$\dots \to J^N \to J^{N-1} \to J^{N-2} \to \dots \to J^1 \to J^0$$

Useful to work with J^{∞} . A local diff. form on J^{∞} – a form on J^N for some N seen as that on J^{∞} .

 J^∞ is equipped with the total derivative

$$\partial_a^T = \frac{\partial}{\partial x^a} + \phi_a^i \frac{\partial}{\partial \phi^i} + \phi_{ab}^i \frac{\partial}{\partial \phi_b^i} + \dots$$

For a given field configuration $\phi^i = s^i(x)$ and local function $f[\phi]$

$$(\partial_a^T f)\Big|_{\phi=s,\phi_a=\partial_a s,\dots} = \partial_a (f\Big|_{\phi=s,\phi_a=\partial_a s,\phi_{ab}=\partial_a \partial_b s,\dots})$$

Space time differentials dx^a . Horizontal differential

$$Q \equiv d_H = dx^a \partial_a^T, \qquad Q^2 = 0.$$

Differential forms:

$$\alpha = \alpha(x, dx, \phi, \phi_a, \ldots)_{I_1 \ldots I_k} d_{\mathsf{v}} \phi^{I_1} \ldots d_{\mathsf{v}} \phi^{I_k}, \qquad \phi^I = \phi^i_{a_1 \ldots a_m}$$

Vertical De Rham differential:

$$d_{\mathsf{V}} = d - Q = d_{\mathsf{V}}\phi^I \frac{\partial}{\partial\phi^I}$$

Variational bicomplex:

$$d_{\mathsf{v}}^2 = 0, \qquad d_{\mathsf{v}}Q + Qd_{\mathsf{v}} = 0, \qquad Q^2 = 0$$

Bidegree (l, p).

A system of partially differential equations (PDE) is a collection of local functions

 $E_{\alpha}[\phi, x]$.

The equation manifold (stationary surface) is $\mathcal{E} \subset J^{\infty}$ singled out by:

$$\partial_{a_1}^T \dots \partial_{a_l}^T E_\alpha = 0, \qquad l = 0, 1, 2, \dots$$

understood as the algebraic equations in J^{∞} . It is usually assumed that x^{a}, ϕ^{i} are not constrained, e.g. \mathcal{E} is a bundle over the space-time.

 ∂_a^T are tangent to \mathcal{E} and hence restricts to \mathcal{E} . So do the differentials Q and d_V . $\partial_a^T|_{\mathcal{E}}$ determine a dim-n integrable distribution (Cartan distribution). Definition: [Vinogradov] A PDE is a manifold \mathcal{E} equipped with an integrable distribution.

In addition one typically assumes regularity, constant rank, and that \mathcal{E} is a bundle over the spacetime. Use notation (\mathcal{E}, Q) .

In this form it is clear which PDEs are to be considered isomorphic.

Scalar field Example: Start with:

$$L = \frac{1}{2}\eta^{ab}\phi_a\phi_b - V(\phi)$$

 \mathcal{E} is coordinatized by $x^a, \phi, \phi_a, \phi_{ab}, \ldots$ Already ϕ_{ab} are not independent. One can e.g. take $\phi_{abc...}$ traceless. The Q differential on \mathcal{E} reads as

$$Qx^a = dx^a$$
, $Q\phi = dx^a\phi_a$, $Q\phi_a = dx^b(\phi_{ab} - \frac{1}{n}\eta_{ab}\frac{\partial V}{\partial \phi})$, ...

So if the system is nonlinear, i.e. $\frac{\partial V}{\partial \phi}$ nonlinear in ϕ , Q is also nonlinear.

Intrinsic (unfolded) realization

Given PDE (\mathcal{E}, Q) defined invariantly one can always find a jet space \mathcal{J} such that (\mathcal{E}, Q) can be realized as a stationary surface of some $E_{\alpha}[u, x]$. There is an intrinsic way to realize (\mathcal{E}, Q) explicitly. If x^a, ψ^A coordinates

on \mathcal{E} (e.g. $\psi^A = \{\phi, \phi_a, \phi_{ab}, \ldots\}$) promote ψ^A to fields $\psi^A(x)$ of a new theory and subject them to EOM's

$$d\psi^A = Q\psi^A$$
, components: $\frac{\partial}{\partial x^a}\psi^A(x) = (\partial_a^T\psi^A)(x)$

Proposition: The original PDE (\mathcal{E}, Q) is equivalent to $d\psi^A = Q\psi^A$ Comments:

- Version of the unfolded formulation (though only zero forms). Unfolded form of gauge systems involves gauge form-fields. *Vasiliev, 1987,...*
- Generalized version of the Proposition involving gauge forms and BRST extension was formulated and proved using BRST technique and Koszule-Tate differential. *Barnich, M.G.,Semikhatov, Tipunin 2004, Barnich, M.G 2010*

Jet space formulation

Becuase \mathcal{E} is a bundle over spacetime, take $\mathcal{J}^{new} = J^{\infty}(\mathcal{E})$. More precisely, if x^a, dx^a, ψ^A are coordinates on \mathcal{E} then

$$x^a, dx^a, \psi^A, \psi^A_b, \psi^A_{bc}, \psi^A_{bcd}, \ldots$$

are coordinates on \mathcal{J}^{new} .

New jet space is equipped with its own horizontal differential:

$$D_H = dx^a \left(\frac{\partial}{\partial x^a} + \psi^A_a \frac{\partial}{\partial \psi^A} + \psi^A_{ab} \frac{\partial}{\partial \psi^A} + \dots\right)$$

"Old" differential Q on \mathcal{E} is extended to \mathcal{J}^{new} by $[D_H, Q] = 0$.

In the new jet space \mathcal{J}^{new} consider the following PDE

$$D_H \psi^A = Q \psi^A$$

In this form the new PDE is manifestly isomorphic to (\mathcal{E}, Q) (because manifolds are isomorphic and horizontal differentials are equal by construction)

Variational (Lagrangian) equations

Let us get back to equations $E_i[\phi, x] = 0$ on the jet space J^{∞} . These are said variational (Lagrangian) if

$$\mathcal{E}_{i} = \frac{\delta^{EL}L}{\delta\phi^{i}}, \qquad \frac{\delta^{EL}F[u,x]}{\delta\phi^{i}} \equiv \frac{\partial F}{\partial\phi^{i}} - \partial_{a}^{T}\frac{\partial F}{\partial\phi^{i}_{a}} + \partial_{a}^{T}\partial_{b}^{T}\frac{\partial F}{\partial\phi^{i}_{ab}} - \dots$$
for some local function $L = L[\phi, x]$. It is convenient to work in terms of Lagrangian density $\mathcal{L} = (dx)^{n} L$.

Here and below

for

$$(dx)^n = dx^1 \dots dx^n$$
, $(dx)^{n-1}_a = \frac{1}{(n-1)!} \epsilon_{ab_2\dots b_n} dx^{b_1} \dots dx^{b_n}$

The notion of Lagrangian is explicitly based on the realization of the equation (\mathcal{E}, Q) in terms of the jet space \mathcal{J} . For instance it's possible that $\mathcal{E} \subset \mathcal{J}$ is variational while $\mathcal{E} \subset \mathcal{J}'$ is not. Naive invariant object – the restriction of \mathcal{L} to \mathcal{E} , does not make much sense.

Presymplectic structure

It is well-known that $\mathcal{L} = (dx)^n L[x, \phi]$ induce an invariant object on \mathcal{E}

Crnkovic, Witten, 1987, Hydon 2005,...

$$(dx)^n E_i d\phi^i = d_V \mathcal{L} - Q\hat{\chi}, \qquad \text{components:} \quad \frac{\delta^{EL} L}{\delta \phi^i} = \frac{\partial L}{\partial \phi^i} + \partial_a^T (\hat{\chi}_i^a)$$

for some 1 form $\hat{\chi} = \hat{\chi}_i d_V \phi^i + \hat{\chi}_{ia} d_V \phi^i_a + \dots$ of degree n-1, called presymplectic potential. For $\chi = \hat{\chi}|_{\mathcal{E}}$ we have

$$Q\sigma = 0, \qquad \sigma = d\chi$$

So we have conserved closed 2-form on \mathcal{E} . It's called canonical presymplectic structure.

As an example consider $L(\phi, \phi_a, \phi_{ab})$. One finds:

$$\chi = (dx)_a^{n-1} \left(\left(\frac{\partial L}{\partial \phi^a} - \partial_b^T \frac{\partial L}{\partial \phi_{ab}} \right) d_{\mathsf{V}} \phi + \frac{\partial L}{\partial \phi_{ab}} d_{\mathsf{V}} \phi_b \right) \Big|_{\mathcal{E}}$$

In particular, for a scalar field with $L = \frac{1}{2}\eta^{ab}\phi_a\phi_b - V(\phi)$

$$\chi = (dx)_a^{n-1} \phi^a d_{\mathsf{V}}\phi, \qquad \sigma = (dx)_a^{n-1} d_{\mathsf{V}}\phi^a d_{\mathsf{V}}\phi$$

More generally:

Definition: A 2-form σ of degree n - 1 on (\mathcal{E}, Q) is called compatible presymplectic structure if $Q\sigma = 0$, $d\sigma = 0$.

Such form in general can be considered irrespective of any realization in terms of jet space and/or Lagrangian.

Symmetries and conservation laws

A well-known fact: both symmetries and conservation laws can be defined in terms of the equation manifold (\mathcal{E}, Q) .

Recall: a vector field \hat{V} on \mathcal{J} is a symmetry if it is evolutionary i.e. $[Q, \hat{V}] = 0$ and tangent to $\mathcal{E} \subset \mathcal{J}$.

Intrinsic terms: a vector field V on (\mathcal{E}, Q) satisfying is called symmetry if [Q, V] = 0 (typically one also requires $Vx^a = 0$).

If $\mathcal{E}\subset \mathcal{J}$ is variational then variational symmetries restricted to \mathcal{E} satisfy in addition

$$L_V \sigma = 0$$

Conservation law (conserved curent) is a degree n-1 0-form K on \mathcal{E} such that QK = 0. K of the form K = QM is trivial.

Any compatible presymplectic structure determines a map from symmetries to conserved currents according to

$$dK = i_V \sigma$$
, components: $\frac{\partial}{\partial \psi^A} K = \sigma_{AB} V^B$

Note: $di_V \sigma = L_V \sigma = 0$. Trivial symmetries are mapped to trivial conserved currents. In the Lagrangian case this is Noether theorem. General case was also discussed recently *Sharapov 2016*.

Note that it is different from the Poisson (BV antibracket) bracket map from conservation laws to symmetries. The degenerate version of the bracket is known as Lagrange structure *Lyakhovich, Sharapov* Suppose that (\mathcal{E}, Q, σ) is realized as $\mathcal{E} \subset J^{\infty}$. Then σ determines a Lagrangian form \mathcal{L} on J^{∞} such that EL equations derived from \mathcal{L} are in general consequences of those defining \mathcal{E} .

More precisely, if \mathcal{E}' is an equation manifold defined by \mathcal{L} then $\mathcal{E} \subset \mathcal{E}'$. Even if σ is canonical (derived from a Lagrangian) there is no guarantee that constructed \mathcal{L} is equivalent to the starting point Lagrangian.

Khavkine 2012, based on earlier: Bridges, Hydon, Lawson 2009, Hydon 2005

Intrinsic Lagrangian

Given an equation manifold (\mathcal{E}, Q, σ) equipped with the compatible presymplectic structure one can construct a natural Lagrangian in terms of the \mathcal{E} -valued fields.

First: define generalized Hamiltonian (better BRST charge) which is a conserved current associated to Q seen as a symmetry of \mathcal{E} . Degree n function \mathcal{H} on \mathcal{E} defined by

$$d_{\mathsf{V}}\mathcal{H} = i_Q\sigma$$
, components: $\frac{\partial}{\partial\psi^A}\mathcal{H} = \sigma_{AB}Q^B$

In the Lagrangian case

$$\mathcal{H} = \chi_A Q^A - \mathcal{L}|_{\mathcal{E}} \qquad Q^A = Q\psi^A$$

E.g. in the simple case where $\mathcal{L} = (dx)^n L(\phi, \phi_a)$

$$\chi = (dx)_a^{n-1} \left(\frac{\partial L}{\partial \phi_a} d_{\mathsf{V}} \phi\right)\Big|_{\mathcal{E}}, \qquad \mathcal{H} = (dx)^n \left(\frac{\partial L}{\partial \phi_a} \phi_a - L\right)\Big|_{\mathcal{E}}$$

New (intrinsic) Lagrangian:

$$\mathcal{L}^{C} = i_{d}\chi - \mathcal{H}$$
, components: $\mathcal{L}^{C} = \chi_{A}d\psi^{A} - \mathcal{H}$

The respective action can be seen as presymplectic generalization

Alkalaev, M.G. 2013

$$S^{C} = \int \left(\chi_{A}(\psi, x, dx) d\psi^{A}(x) - \mathcal{H}(\psi, x, dx) \right)$$

of AKSZ action. Its equations of motion read as

$$\sigma_{AB}(d\psi^B - Q^B) = 0\,,$$

and hence are consequences of the original $d\psi^B - Q^B = 0$.

For a local theory \mathcal{L}^C does not depend on most of the fields ψ^A . These can be treated as pure-gauge variables with algebraic (shift) gauge transformations. With this interpretation and under certain assumptions we can prove that starting point \mathcal{L} and \mathcal{L}^C are equivalent.

Examples

Scalar field: Start with:

$$L = \frac{1}{2}\eta^{ab}\phi_a\phi_b - V(\phi) \tag{1}$$

 \mathcal{E} is coordinatized by $x^a, \phi, \phi_a, \phi_{ab}, \ldots$ take $\phi_{abc...}$ traceless. The Q differential reads as

$$Qx^{a} = dx^{a}, \qquad Q\phi = dx^{a}\phi_{a}, \qquad Q\phi_{a} = dx^{b}(\phi_{ab} - \frac{1}{n}\eta_{ab}\frac{\partial V}{\partial \phi})$$

The presymplectic potential and 2-form:

$$\chi = \left((dx)_a^{n-1} (\frac{\partial L}{\partial \phi^a} - \partial_c^T \frac{\partial L}{\partial \phi_{ca}}) d_{\mathsf{V}} \phi) \right) \Big|_{\mathcal{E}} = (dx)_a^{n-1} \phi^a d_{\mathsf{V}} \phi, \quad \sigma = (dx)_a^{n-1} d_{\mathsf{V}} \phi^a d_{\mathsf{V}} \phi$$

The Hamiltonian obtained from $d\mathcal{H} - i_Q \sigma = 0$:

$$\mathcal{H} = (dx)^n (\phi_a \phi^a - L|_{\mathcal{E}}) = \frac{1}{2} \phi^a \phi_a + V(\phi)$$

The intrinsic Larangian: Schwinger

$$\mathcal{L}^{c} = (dx)^{n} \left(\phi^{a} (\partial_{a} \phi - \frac{1}{2} \phi_{a}) - V(\phi) \right)$$

Polywave equation

The simplest genuine higher derivative example is $L = \frac{1}{2} \Box \phi \Box \phi = \frac{1}{2} \phi_{aa} \phi_{bb}$ (here and below $\phi_{aa} = \eta^{ab} \phi_{ab}$). Presymplectic potential:

$$\chi = (-\phi_{acc}d_{\mathsf{V}}\phi + \phi_{cc}d_{\mathsf{V}}\phi_a)(dx)_a^{n-1}$$

Hamiltonian

$$\mathcal{H} = (dx)^n (-\phi_{acc}\phi_a + \frac{1}{2}\phi_{cc}\phi_{aa}).$$

The intrinsic action takes the form

$$S^{C} = \int d^{n}x(-\phi_{acc}(\partial_{a}\phi - \phi_{a}) + \phi_{cc}\partial_{a}\phi_{a} - \frac{1}{2}\phi_{aa}\phi_{cc}).$$

Note that the action depends on only the following variables ϕ , ϕ_a , ϕ_{aa} , ϕ_{acc} but NOT on the traceless component of ϕ_{ab} and ϕ_{abc} .

It is equivalent to $\int \phi_{aa}\phi_{cc}$. Indeed, varying ϕ_a and ϕ_{acc} gives $\phi_a = \partial_a \phi$ and $\phi_{acc} = \partial_a \phi_{cc}$ resulting in

$$\int d^n x (\phi_{cc} \partial_a \partial_a \phi - \frac{1}{2} \phi_{aa} \phi_{cc})$$

YM theory

The YM field is A^a taking values in a Lie algebra \mathfrak{g} equipped with an invariant inner product \langle,\rangle . We will use notation $A^a_{b_1...b_l}$ for $\partial^T_{b_1}...\partial^T_{b_l}A^a$. The Lagrangian:

$$L = \frac{1}{4} \langle F_{ab}, F_{ab} \rangle, \qquad F_{ab} := A_a^b - A_b^a + [A^a, A^b].$$

Coordinates on \mathcal{E} :

$$x^{a}, A^{a}, F_{ab}, S_{ab} := A^{b}_{a} + A^{a}_{b}, A^{a}_{bc}, \dots$$

The one form χ is given by

$$\chi = \frac{\partial L}{\partial A_a^b} dA^b (dx)_a^{n-1} = \langle F_{ab}, dA^b \rangle (dx)_a^{n-1}$$

The Hamiltonian

$$\mathcal{H} = \left(\frac{\partial L}{\partial A_a^b} A_a^b - \frac{1}{4} \langle F_{ab}, F_{ab} \rangle\right) (dx) = \frac{1}{2} \langle F_{ab}, \frac{1}{2} F_{ab} - [A^a, A^b] \rangle$$

The intrinsic action

$$\int \frac{1}{2} \langle F_{ab}, \partial_a A^b - \partial_b A^a \rangle - \frac{1}{2} \langle F_{ab}, \frac{1}{2} F_{ab} - [A^a, A^b] \rangle = \int \frac{1}{2} \langle F_{ab}, \partial_a A^b - \partial_b A^a + [A^a, A^b] - \frac{1}{2} F_{ab} \rangle$$

equivalent to the starting point action through the elimination of F_{ab} by its own equations of motion.

Well-known first-order action for YM.

Algebraic gauge symmetries

Assume that starting point Lagrangian \mathcal{L} does not have shift gauge symmetries i.e. there are no invertible nontrivial R_i^{α} such that

$$R^i_{lpha}[\phi,\partial^T_a] \, rac{\delta^{EL} \mathcal{L}}{\delta \phi^i} = 0 \, .$$

The intrinsic Lagrangian does have infinite amount of shift gauge symmetry. EOMs are

$$\sigma_{AB}(d\psi^B - Q^B) = 0$$

so that any null vector of σ_{AB} gives rise to a shift gauge symmetry. If $\sigma_{AB}R^B(\psi) = 0$ then $\delta\psi^A = R^A\epsilon(x)$ is a gauge symmetry of the intrinsic action.

Interpretation of the intrinsic action: all its shift gauge symmetries are taken into account (the respective fields are set to fixed values – i.e. gauge-fixed).

Restrict to "reasonable theories: the Lagrangian theory is "reasonable" if by adding/eliminating auxiliary fields and local invertible change of variables the action $\int \mathcal{L}$ can be brought to the form

$$S^{first} = \int \mathcal{L}^{first}[u] = \int d^d x (V^a_\lambda(u, x) \partial_a u^\lambda - H(u, x))$$

and such that its equations of motion do not imply algebraic constraints between undifferentiated fields u^{λ} . (i.e. u^{λ} reduced to \mathcal{E} remain independent)

Note that know frame-like Larangians are "resonable". Thanks to *Vasiliev*, *Zinoveiv*, *Alakalev*, *Shaynkman*, *Skvortsov*, all known free Lagragian HS fields are resonable.

Proposition: for a "reasonable" system the original Lagrangian $\mathcal{L}[\phi]$ and the intrinsic Lagrangian $\mathcal{L}^{C}[\psi]$ are equivalent.

Proof. Equivalent Lagrangian formulations result in equivalent presymplectic structures on the equation manifold \mathcal{E} . It is enough to consider the first order Lagrangian. The respective presymplectic structure reads as

$$\chi = \left((dx)_a^{n-1} V_\lambda^a du^\lambda \right) \Big|_{\mathcal{E}} = (dx)_a^{n-1} V_\lambda^a du^\lambda$$

Hamiltonian:

$$\mathcal{H} = ((dx)^n V^a_\lambda u^\lambda_a - \mathcal{L}^{first})|_{\mathcal{E}} = (dx)^n H$$

Finally:

$$\mathcal{L}^{C} = (dx)^{n} (V_{\lambda}^{a} \partial_{a} u^{\lambda} - H(\phi))$$

and explicitly coincides with the starting point first order Lagrangian.

BRST extension and frame-like Lagrangians

To make our picture more geometrical let us introduce ghosts:

$$x^a, \psi^A \longrightarrow x^a, \psi^A, C^{\alpha}$$

$$Q \equiv d_H \quad \rightarrow \quad Q = d_H + \gamma \,, \qquad \gamma = C^{\alpha} R^A_{\alpha}(\psi) \frac{\partial}{\partial \psi^A} + C^{\alpha} C^{\beta} U^{\gamma}_{\alpha\beta}(\psi) \frac{\partial}{\partial C^{\gamma}}$$
$$d^2_H = 0 = \gamma^2 \qquad d_H \gamma + \gamma d_H = 0$$

Geometrically: \mathcal{E} is now equipped with two integrable distributions: Cartan (d_H) and gauge (γ)

AKSZ sigma model with the target $\ensuremath{\mathcal{E}}$

$$\psi^A \quad o \quad \psi^A(x) \qquad C^lpha o A^lpha_a(x) dx^a$$

If $\Psi^{I} = \{\psi^{A}, C^{\alpha}\}$, equations of motion:

$$d\Psi^I = Q^I(\Psi) \quad \rightarrow$$

 $dA^{\alpha} = d_{H}A^{\alpha} + U^{\gamma}_{\alpha\beta}(\psi)A^{\gamma}A^{\beta}, \qquad d\psi^{B} = d_{H}\psi^{B} + R^{B}_{\alpha}(\Psi)A^{\alpha}$

(Nonminimal) unfolded formulation Construction and equivalence proof

Vasiliev

Barnich, M.G., Semikhatov, Tipunin 2004, Barnich, M.G 2010

Example of gravity

After elimination of contractible pairs for Q the manifold ${\cal E}$

$$e^a, \quad \omega^{ab}, \quad W^{cd}_{ab}, \quad W^{cd}_{ab|e}, \quad W^{cd}_{ab|e...}$$

ghosts to which frame field and spin connection are associated and
 Weyl tensor and its covariant derivatives.

$$Qe^{a} = \omega^{a}{}_{c} e^{c}, \qquad Q\omega^{ab} = \omega^{a}{}_{c} \omega^{cb} + e^{c} e^{d} W^{ab}_{cd}, \qquad \dots,$$

Presymplectic potential χ and form

$$\chi = \frac{1}{2} \epsilon_{abcd} d\omega^{ab} e^c e^d, \qquad \sigma = d\omega^{ab} de^c \epsilon_{abcd} e^d$$

Hamiltonian (term with Weyl tensor vanishes)

$$\mathcal{H} = Q^A \chi_A = \frac{1}{2} \omega_c^a \omega^{cb} \epsilon_{abcd} e^c e^d$$

Intrinsic action (frame-like GR action):

$$S^{C} = \int \chi_{A}(d\psi^{A} + Q^{A}) = S_{GR}[e, \omega] = \int (d\omega^{ab} + \omega^{a}{}_{c}\omega^{cb})\epsilon_{abcd}e^{c}e^{d}$$

Alkalaev, M.G. 2013

Conclusions

- A Lagrangian system can be defined in terms of its equation manifold \mathcal{E} without refereeing to any particular realization of \mathcal{E} in one or another set of fields and choice of the Lagrangian. While the structure of the equation is encoded in the differential Q the Lagrangian is encoded in the compatible presymplectic structure σ .

- In particular, when looking for a Lagrangian for an equation \mathcal{E} it is enough to study compatible presymplectic structures on \mathcal{E} . No need to study possible explicit realizations of \mathcal{E} .

- Easy to see whether Lagrangian systems are equivalent or not.

- BRST extension to manifestly gauge systems. Intrinsic Lagrangian = Frame-like Lagrangian.

- The presymplectic form can be seen to originate from the odd symplectic form of the Batalin-Vilkovisky formalism.

Parent Lagrangian

One way to understand where do the structure of the intrinsic Lagrangian comes from is to consider "parent" action for $L = L(\phi, \phi_a, \phi_{ab})$:

$$S^{P} = \int \left(L(\phi, \phi_{a}, \phi_{ab}) + \pi^{a}(\partial_{a}\phi - \phi_{a}) + \pi^{ac}(\partial_{a}\phi_{c} - \phi_{ac}) + \ldots \right) \, .$$

Its equations of motion read as

$$\frac{\partial L}{\partial \phi} - \partial_a \pi^a = 0,$$

$$\pi^a - \frac{\partial L}{\partial \phi_a} + \partial_c \pi^{ca} = 0, \qquad \pi^{ab} - \frac{\partial L}{\partial \phi_{ab}} = 0, \qquad \pi^{ab...} = 0$$

$$\phi_a = \partial_a \phi, \qquad \phi_{ab} = \partial_{(a} \phi_{b)}, \qquad \dots$$

Using the last line the derivatives in the first two lines can be replaced with the total derivatives. Using the second line the first equation becomes EL

$$\frac{\partial L}{\partial \phi} - \partial_a^T \frac{\partial L}{\partial \phi_a} + \partial_c^T \partial_a^T \frac{\partial L}{\partial \phi_{ca}} = 0$$

Introduce 1-form of degree n-1:

$$\bar{\chi} = (dx)_a^{n-1} (\pi^a d\phi + \pi^{ab} d\phi_b + \ldots)$$

"parent" Hamiltonian

$$\bar{\mathcal{H}} = (\pi^a \phi_a + \pi^{ab} \phi_{ab} + \ldots - L(\phi, \phi_a, \phi_{ab}))(dx)^n$$

The parent action can be written as

$$S^P = \int (\bar{\chi}_A d\Psi^A - \bar{\mathcal{H}}),$$

where Ψ^A stand for all the coordinates $\phi, \phi_{\dots}, \pi^{\dots}$.

Consider the following submanifold of the space of $x^a, dx^a, \phi, \pi^{...}, \phi_{...}$

$$\pi^{a} - \frac{\partial L}{\partial \phi^{a}} + \partial_{c}^{T} \frac{\partial L}{\partial \phi_{ca}} = 0, \qquad \pi^{ab} - \frac{\partial L}{\partial \phi_{ab}} = 0, \qquad \pi^{ab...} = 0,$$
$$\partial_{a_{1}}^{T} \dots \partial_{a_{k}}^{T} (EL) = 0,$$

These are consequences of the parent action equations of motion.

The submanifold they single out is \mathcal{E} (equation manifold of L).

 $\chi = \bar{\chi}|_{\mathcal{E}}$ Presymplectic potential for L

One can show

$$i_Q d\sigma = d\mathcal{H}, \qquad \mathcal{H} = \bar{\mathcal{H}}|_{\mathcal{E}}, \qquad \sigma = d\chi$$

Furthermore, χ and \mathcal{H} determine the intrinsic action

$$S^{C}[\psi] = \int \left(\chi_{A}(x, dx^{a}, \psi) d\psi^{A} - \mathcal{H}(x, dx^{a}, \psi) \right) ,$$

where x^a, ψ^A are coordinates on \mathcal{E} . This can be independently arrived at by eliminating auxiliary fields starting from the parent action.