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Defy Einstein Gravity?

• Super Gravity

• Massive Gravity

• Higher-derivative Gravity

• Colored Gravity

• Higher Spin Gravity



Einstein Gravity  ⟷  massless spin 2



Einstein Gravity  ⟷  massless spin 2

Multiple massless spin 2 
with color decoration

Colored Gravity:



Einstein Gravity  ⟷  massless spin 2

Multiple massless spin 2 
with color decoration

Colored Gravity:

Q1 No, it works in certain cases

Q2 
There are surprising features



No-Go for colored gravity 

classical vacua with varying degrees of color symmetry breaking. We show that these (A)dS

vacua have di↵erent cosmological constants. In Section 6, we expand the theory around a

color non-singlet vacuum and analyze the field spectrum contents. We demonstrate that

the fields corresponding to the broken part of the color symmetry describe the spectrum

of partially massless spin-two field. Finally, Section 7 contains various discussions of our

results and outlooks.

2 No-Go Theorem on Multiple Spin-Two Theory

The Einstein gravity describes the dynamics of massless spin-two field on a chosen vacuum.

Conversely, it can be also verified that the Einstein gravity is the only interacting theory

of a massless spin-two field (see e.g. [34–36]). In this context, one may ask whether there

exists a non-trivial theory of multiple massless spin two fields. This possibility has been

examined in [4–7], and we shall begin our discussion by reviewing these results2.

The no-go theorem asserts that there is no consistent theory of interacting multiple

massless spin-two fields only. The first point to note in this consideration is that any gauge-

invariant two-derivative cubic interactions among the spin-two fields is in fact equivalent

to that of Einstein-Hilbert (EH) action, modulo color-decorated cubic coupling constants

gIJK :

gIJK

⇣
hIµ⇢ @

⇢ hJ⌫�@
�hK µ⌫ + · · ·

⌘
. (2.1)

Here, hIµ⌫ are the massless spin-two fields with color index I , and the tensor structure

inside of the bracket is that of the EH cubic vertex. For the consistency with the color

indices, it is required that the coupling constants are fully symmetric: gIJK = g
(IJK)

.

Moreover, the gauge invariance requires that these constants define a Lie algebra spanned

by the colored isometry generators. For instance, in the Minkowski spacetime, the colored

generators P I
µ and M I

µ⌫ obey

[M I
µ⌫ , P

J
⇢ ] = 2 gIJK ⌘⇢[⌫ P

K
µ] , [M I

µ⌫ , M
J
⇢� ] = 4 gIJK ⌘

[⌫[⇢M
K
�]µ] . (2.2)

Relating these colored generators to the usual isometry ones as P I
µ = Pµ ⌦ T I and M I

µ⌫ =

Mµ⌫ ⌦ T I , one can straightforwardly conclude that the color algebra gc generated by

T I must be commutative and associative [4–6]. Moreover, one can even show that gc

necessarily reduces to a direct sum of one-dimensional ideals [7]: T I T J = 0 for I 6= J .

Therefore, in this set-up, the only possibility is the simple sum of several copies of Einstein

gravity which do not interact with each other.

On the other hand, the no-go theorem can be evaded with a slight generalization of

the setup. Firstly, if the isometry algebra can be consistently extended from a Lie algebra

to an associative one, then the commutativity condition on the color algebra gc can be

relaxed. The associative extension of isometry algebra typically requires to include other

spectra, such as spin-one and possibly higher spins [19, 22, 23]. Moreover, it is not necessary

to require that the structure constants gIJK of gc be totally symmetric, but su�cient to

2
See also related discussion in [37, 38].
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• Multiple massless spin 2

☛ global symmetries

☛ cubic interactions
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➠ only trivial solution
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➠ only trivial solution

➠ violation of color gauge inv.

• Color-charged massless spin 2 in flat space

☛ minimal interaction to gauge field
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See also related discussion in [37, 38].
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examine the fate of the general covariance in such a theory: if there exists a genuine

metric field among these massless spin-two fields, the others should be subject to interact

covariantly with gravity. Moreover, one can also examine whether the multiple massless

spin two fields can be color decorated bona fide by carrying non-Abelian charges. In

principle, a theory can be made to covariantly interact with gravity or non-Abelian gauge

field by simply replacing all its derivatives by the covariant ones with respect to both the

di↵eomorphism transformation and the non-Abelian gauge transformation. However, as

for the di↵eomorphism-covariant interactions of higher-spin fields [41], such replacements

spoil the gauge invariance of the original system [42]. The problematic term in the gauge

variation is proportional to the curvatures, namely, Riemann tensor Rµ⌫⇢� or non-abelian

gauge field strength Fµ⌫ . In three-dimensions, fortuitously, this is not a problem as these

curvatures are just proportional to the field equations of Eintein gravity or Chern-Simons

gauge theory, respectively. In higher dimensions, these terms can be compensated by

introducing a non-trivial cosmological constant, but at the price of adding higher-derivative

interactions [43, 44].

All in all, to have a consistent interacting theory of color-decorated massless spin-two

fields, we need an (A)dS isometry gauge algebra which can be extended to an associative

one. An immediate candidate is higher spin algebra in any dimensions, since Vasiliev’s

higher-spin theory can be consistently color-decorated, as mentioned before. Other option

is to take the isometry algebras of (A)dS
3

and (A)dS
5

which are isomorphic to sl

2

� sl

2

and sl

4

and can be extended to associative ones, gl
2

� gl

2

and gl

4

by simply adding unit

elements corresponding to spin-one fields.

3 Color-Decorated (A)dS

3

Gravity: Chern-Simons Formulation

Let us now move to the explicit construction of a theory of colored gravity. In this paper,

we focus on the case of three dimensional gravity.

3.1 Color-Decorated Chern-Simons Gravity

In the uncolored case, it is known that the three-dimensional gravity can be written as a

Chern-Simons theory with the action

S[A] =


4⇡

Z
Tr

⇣
A ^ dA+

2

3
A ^A ^A

⌘
, (3.1)

for the gauge algebra sl

2

� sl

2

. The constant  is the level of Chern-Simons action. We

are interested in color-decorating this theory. Physically, this can be done by attaching

Chan-Paton factors to the gravitons. Mathematically, this amounts to requiring the fields

to take values in the tensor-product space gi ⌦ gc , where the gi is the isometry part of the

algebra including sl

2

� sl

2

and the gc is a finite-dimensional Lie algebra of a matrix group

Gc . For generic Lie algebras gi and gc , their tensor product do not form a Lie algebra, as

is clear from the commutation relations:

[MX ⌦ TI ,MY ⌦ TJ ] =
1

2
[MX ,MY ]⌦ {TI ,TJ }+

1

2
{MX ,MY }⌦ [TI ,TJ ] . (3.2)
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The anticommutators {TI ,TJ} and {MX ,MY } do not make sense within the Lie algebras.

Instead, if we start from associative algebras gi and gc , their direct product gi⌦gc will form

an associative algebra. Hence, we need to select associative algebras for gi and gc . For

the color algebra gc , we will consider the matrix algebra u(N), but any finite-dimensional

associative algebra can be used as the color algebra. For the isometry algebra gi , we shall

take gi = gl

2

� gl

2

(instead of sl
2

� sl

2

). We also need for the fields to obey Hermicity

conditions compatible with the real form of the complex associate algebra.

Note that if the isometry algebra gi is not associative — as is the case with Poincaré

algebra discussed in [4–7] — then the requirement of the closure of the algebra is that the

color algebra gc be associative (for the first term in (3.2) to be in the product algebra) and

commutative (for the second term in (3.2) to vanish).

Therefore, our model of colored gravity is the Chern-Simons theory (3.1) where the

one-form gauge field A takes value in

g = (gl
2

� gl

2

)⌦ u(N)  id⌦ I . (3.3)

Notice that we have subtracted the id⌦ I — where id and I are the centers of glM � glM

and u(N) , respectively — since it only adds an abelian Chern-Simons which do not interact

with other fields. It would be worth to remark as well that the algebra g necessarily contains

elements in id⌦ su(N) which corresponds to the gauge symmetries of su(N) Chern-Simons

theory. In this sense, this su(N) will be referred to as the color algebra.3 The trace Tr of

(3.1) should be defined also in the tensor product space and is given by the product of two

traces as

Tr(gi ⌦ gc) = Tr(gi) Tr(gc) . (3.4)

It turns out useful 4 to decompose the algebra g (3.3) into two orthogonal parts as

g = b� c such that Tr(b c) = 0 , (3.5)

where b is the subalgebra:

[b, b] ⇢ b , (3.6)

corresponding to the gravity plus gauge sector, whereas c corresponds to the matter sector

— including all colored spin-two fields — subject to the covariant transformation,

[b, c] ⇢ c . (3.7)

Corresponding to the decomposition (3.5), the one-form gauge field A can be written as

the sum of two parts

A = B + C , (3.8)

3
In the Introduction, we have explained our model without taking into account this subtraction for the

simplicity sake.

4
Later, we will take advantage of this decomposition in solving the torsionless condition and convert the

Chern-Simons formulation to the metric formulation.

– 5 –

The anticommutators {TI ,TJ} and {MX ,MY } do not make sense within the Lie algebras.

Instead, if we start from associative algebras gi and gc , their direct product gi⌦gc will form

an associative algebra. Hence, we need to select associative algebras for gi and gc . For

the color algebra gc , we will consider the matrix algebra u(N), but any finite-dimensional

associative algebra can be used as the color algebra. For the isometry algebra gi , we shall

take gi = gl

2

� gl

2

(instead of sl
2

� sl

2

). We also need for the fields to obey Hermicity

conditions compatible with the real form of the complex associate algebra.

Note that if the isometry algebra gi is not associative — as is the case with Poincaré
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examine the fate of the general covariance in such a theory: if there exists a genuine

metric field among these massless spin-two fields, the others should be subject to interact

covariantly with gravity. Moreover, one can also examine whether the multiple massless
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examine the fate of the general covariance in such a theory: if there exists a genuine

metric field among these massless spin-two fields, the others should be subject to interact

covariantly with gravity. Moreover, one can also examine whether the multiple massless

spin two fields can be color decorated bona fide by carrying non-Abelian charges. In

principle, a theory can be made to covariantly interact with gravity or non-Abelian gauge

field by simply replacing all its derivatives by the covariant ones with respect to both the

di↵eomorphism transformation and the non-Abelian gauge transformation. However, as

for the di↵eomorphism-covariant interactions of higher-spin fields [41], such replacements

spoil the gauge invariance of the original system [42]. The problematic term in the gauge

variation is proportional to the curvatures, namely, Riemann tensor Rµ⌫⇢� or non-abelian

gauge field strength Fµ⌫ . In three-dimensions, fortuitously, this is not a problem as these

curvatures are just proportional to the field equations of Eintein gravity or Chern-Simons

gauge theory, respectively. In higher dimensions, these terms can be compensated by

introducing a non-trivial cosmological constant, but at the price of adding higher-derivative

interactions [43, 44].

All in all, to have a consistent interacting theory of color-decorated massless spin-two

fields, we need an (A)dS isometry gauge algebra which can be extended to an associative

one. An immediate candidate is higher spin algebra in any dimensions, since Vasiliev’s

higher-spin theory can be consistently color-decorated, as mentioned before. Other option

is to take the isometry algebras of (A)dS
3

and (A)dS
5

which are isomorphic to sl

2

� sl

2

and sl

4

and can be extended to associative ones, gl
2

� gl

2

and gl

4

by simply adding unit

elements corresponding to spin-one fields.

3 Color-Decorated (A)dS

3

Gravity: Chern-Simons Formulation

Let us now move to the explicit construction of a theory of colored gravity. In this paper,

we focus on the case of three dimensional gravity.

3.1 Color-Decorated Chern-Simons Gravity

In the uncolored case, it is known that the three-dimensional gravity can be written as a

Chern-Simons theory with the action

S[A] =


4⇡

Z
Tr

⇣
A ^ dA+

2

3
A ^A ^A

⌘
, (3.1)

for the gauge algebra sl

2

� sl

2

. The constant  is the level of Chern-Simons action. We

are interested in color-decorating this theory. Physically, this can be done by attaching

Chan-Paton factors to the gravitons. Mathematically, this amounts to requiring the fields

to take values in the tensor-product space gi ⌦ gc , where the gi is the isometry part of the

algebra including sl

2

� sl

2

and the gc is a finite-dimensional Lie algebra of a matrix group

Gc . For generic Lie algebras gi and gc , their tensor product do not form a Lie algebra, as

is clear from the commutation relations:

[MX ⌦ TI ,MY ⌦ TJ ] =
1

2
[MX ,MY ]⌦ {TI ,TJ }+

1

2
{MX ,MY }⌦ [TI ,TJ ] . (3.2)
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algebra discussed in [4–7] — then the requirement of the closure of the algebra is that the

color algebra gc be associative (for the first term in (3.2) to be in the product algebra) and

commutative (for the second term in (3.2) to vanish).

Therefore, our model of colored gravity is the Chern-Simons theory (3.1) where the

one-form gauge field A takes value in

g = (gl
2

� gl

2

)⌦ u(N)  id⌦ I . (3.3)

Notice that we have subtracted the id⌦ I — where id and I are the centers of glM � glM

and u(N) , respectively — since it only adds an abelian Chern-Simons which do not interact

with other fields. It would be worth to remark as well that the algebra g necessarily contains

elements in id⌦ su(N) which corresponds to the gauge symmetries of su(N) Chern-Simons

theory. In this sense, this su(N) will be referred to as the color algebra.3 The trace Tr of

(3.1) should be defined also in the tensor product space and is given by the product of two

traces as

Tr(gi ⌦ gc) = Tr(gi) Tr(gc) . (3.4)

It turns out useful 4 to decompose the algebra g (3.3) into two orthogonal parts as

g = b� c such that Tr(b c) = 0 , (3.5)

where b is the subalgebra:

[b, b] ⇢ b , (3.6)

corresponding to the gravity plus gauge sector, whereas c corresponds to the matter sector

— including all colored spin-two fields — subject to the covariant transformation,

[b, c] ⇢ c . (3.7)

Corresponding to the decomposition (3.5), the one-form gauge field A can be written as

the sum of two parts

A = B + C , (3.8)

3
In the Introduction, we have explained our model without taking into account this subtraction for the

simplicity sake.

4
Later, we will take advantage of this decomposition in solving the torsionless condition and convert the

Chern-Simons formulation to the metric formulation.

– 5 –

➠ contains more spectrum (e.g. HS)



3D Chern-Simons
                             Colored Gravity

Gc . For generic Lie algebras gi and gc , their tensor product do not form a Lie algebra, as

is clear from the commutation relations:

[MX ⌦ TI ,MY ⌦ TJ ] =
1

2
[MX ,MY ]⌦ {TI ,TJ }+

1

2
{MX ,MY }⌦ [TI ,TJ ] . (3.2)

The anticommutators {TI ,TJ} and {MX ,MY } do not make sense within the Lie algebras.

Instead, if we start from associative algebras gi and gc , their direct product gi⌦gc will form

an associative algebra. Hence, we need to select associative algebras for gi and gc . For

the color algebra gc , we will consider the matrix algebra u(N), but any finite-dimensional

associative algebra can be used as the color algebra. For the isometry algebra gi , we shall

take gi = gl

2

� gl

2

(instead of sl
2

� sl

2

). We also need for the fields to obey Hermicity

conditions compatible with the real form of the complex associate algebra.

Note that if the isometry algebra gi is not associative — as is the case with Poincaré
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assume that the totally symmetric part is non-vanishing, g
(IJK)

6= 0 , so that massless

spin-two fields have non-trivial interactions among themselves.

Hence, an interacting theory of multiple massless spin-two fields might be viable once

other fields are added and coupled to them. As the next consistency check, one can

examine the fate of the general covariance in such a theory: if there exists a genuine

metric field among these massless spin-two fields, the others should be subject to interact

covariantly with gravity. Moreover, one can also examine whether the multiple massless

spin two fields can be color decorated bona fide by carrying non-Abelian charges. In

principle, a theory can be made to covariantly interact with gravity or non-Abelian gauge

field by simply replacing all its derivatives by the covariant ones with respect to both the

di↵eomorphism transformation and the non-Abelian gauge transformation. However, as

for the di↵eomorphism-covariant interactions of higher-spin fields [40], such replacements

spoil the gauge invariance of the original system [41]. The problematic term in the gauge

variation is proportional to the curvatures, namely, Riemann tensor Rµ⌫⇢� or non-abelian

gauge field strength Fµ⌫ . In three-dimensions, fortuitously, this is not a problem as these

curvatures are just proportional to the field equations of Eintein gravity or Chern-Simons

gauge theory, respectively. In higher dimensions, these terms can be compensated by

introducing a non-trivial cosmological constant, but at the price of adding higher-derivative

interactions [42, 43].

All in all, to have a consistent interacting theory of color-decorated massless spin-two

fields, we need an (A)dS isometry gauge algebra which can be extended to an associative

one. An immediate candidate is higher spin algebra in any dimensions, since Vasiliev’s

higher-spin theory can be consistently color-decorated, as mentioned before. Other option

is to take the isometry algebras of (A)dS
3

and (A)dS
5

which are isomorphic to sl

2

� sl

2

and sl

4

and can be extended to associative ones, gl
2

� gl

2

and gl

4

by simply adding unit

elements corresponding to spin-one fields.

3 Color-Decorated (A)dS

3

Gravity: Chern-Simons Formulation

Let us now move to the explicit construction of a theory of colored gravity. In this paper,

we focus on the case of three dimensional gravity.

3.1 Color-Decorated Chern-Simons Gravity

In the uncolored case, it is known that the three-dimensional gravity can be written as a

Chern-Simons theory with the action

S[A] =


4⇡

Z
Tr

⇣
A ^ dA+

2

3
A ^A ^A

⌘
, (3.1)

for the gauge algebra sl

2

� sl

2

. The constant  is the level of Chern-Simons action. We

are interested in color-decorating this theory. Physically, this can be done by attaching

Chan-Paton factors to the gravitons. Mathematically, this amounts to requiring the fields

to take values in the tensor-product space gi ⌦ gc , where the gi is the isometry part of the

algebra including sl

2

� sl

2

and the gc is a finite-dimensional Lie algebra of a matrix group
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subtract Abelian CS

two additional gauge fields

• CS action:

• Gauge Algebra:
The totally symmetric and anti-symmetric structure constants gIJK and fIJK are both

real-valued.

We normalize the center generators of both algebras such that their traces are given

by 5

Tr(J) = 2
p
�, Tr(J̃) = �2

p
�, Tr(I) = N . (3.17)

The trace of all other elements vanish. This also defines the trace convention in the Chern-

Simons action (3.1). With the associative product defined in (3.11) , these traces yields all

the invariant multilinear forms. For instance, we get the bilinear forms,

Tr(Ja Jb) = 2
p
� ⌘ab , Tr(J̃a J̃b) = �2

p
� ⌘ab , Tr(TI TJ) = �IJ , (3.18)

which extract the quadratic part of action.

3.3 Classical Vacua
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F = 0 . In searching for solutions, we choose to decompose the subspaces b and c in (3.5)

as

b = b

GR

� b

Gauge

, c = iso⌦ su(N) . (3.19)

Here, for the gravity plus gauge sector,

b

GR

= iso⌦ I , b

Gauge

= id⌦ su(N) , (3.20)

in which iso stands for the isometry algebra of the (A)dS
3

space:

iso = sl

2

� sl

2

. (3.21)

The vacuum solution is the configuration for which the connection A is nonzero only

for the color singlet component and is given by the (A)dS
3

space:

B =

✓
1

2
!abMab +

1

`
ea Pa

◆
I , C = 0, (3.22)

where ` is the curvature radius of (A)dS
3

. The zero-curvature condition imposes to !ab

and ea the usual zero (A)dS curvature and zero torsion conditions:

d!ab + !a
c ^ !cb +

�

`2
ea ^ eb = 0 , (3.23)

d ea + !ab ^ eb = 0 , (3.24)

which define the (A)dS
3

vacuum with the cosmological constant ⇤ = �(�/`2).

For a general solution, we again decompose A = B+C according to (3.19). The gravity

plus gauge sector takes the form

B =


1

2

✓
!ab +

1

`
⌦ab

◆
Mab +

1

`
ea Pa

�
I +A+ Ã , (3.25)

5
We use the same notation Tr for the traces of both the isometry algebra and the matrix algebra. We

trust this will generate maximal confusion to the readers.

– 7 –

where B and C takes value in b and c , respectively. In terms of B and C , the Chern-Simons

action (3.1) is reduced to

S[B, C] = 

4⇡

Z
Tr

✓
B ^ dB +

2

3
B ^ B ^ B + C ^DB C +

2

3
C ^ C ^ C

◆
, (3.9)

where DB is the the B-covariant derivative:

DB C = d C + B ^ C + C ^ B . (3.10)

This splitting turns out to be a useful guideline in keeping manifest covariance with respect

to the di↵eomorphism and the non-abelian gauge transformation.

3.2 Basis of Associative Algebra

For further detailed analysis, we set our conventions and notations of the associative algebra

involved. The sl
2

has three generators J
0

, J
1

, J
2

. Combining them with the center generator

J , one obtains gl
2

= Span{J, J
0

, J
1

, J
2

} with the product

Ja Jb = ⌘ab J + ✏abc J
c [ a, b, c = 0, 1, 2 ] . (3.11)

The ⌘ab is the flat metric of sl
2

with mostly positive signs and ✏abc is the Levi-civita tensor

of sl
2

with sign convention ✏
012

= +1 . The generators of the other gl
2

will be denoted by J̃a
and J̃ . In the case of AdS

3

background, the real form of the isometry algebra corresponds

to so(2, 2) ' sl(2,R)� sl(2,R), which satisfy

(Ja, J̃a)
† = �(Ja, J̃a) , (J, J̃ )† = (J, J̃ ) . (3.12)

In the case of dS
3

background, the real form of the isometry algebra corresponds to

so(1, 3) ' sl(2,C), which satisfy

(Ja, J̃a)
† = �(J̃a, Ja) , (J, J̃ )† = (J̃ , J ) . (3.13)

Defining the Lorentz generator Mab and the translation generator Pa as

Mab =
1

2
✏ab

c
�
Jc + J̃c

�
, Pa =

1

2
p
�

�
Ja � J̃a

�
, (3.14)

where � = +1 for AdS
3

and � = �1 for dS
3

, we recover the standard commutation relations

[Mab,Mcd ] = 2
�
⌘d[aMb]c + ⌘c[bMa]d

�
, [Mab, Pc ] = 2 ⌘c[b Pa] , [Pa, Pb ] = �Mab ,

(3.15)

of so(2, 2) and so(1, 3) for � = +1 and �1, respectively.

The color algebra su(N) can be supplemented with the center I to form the associative

algebra u(N) , with the product

TI TJ =
1

N
�IJI +

�
gIJ

K + i fIJ
K
�
TK . (I, J,K = 1, · · · , N2 � 1). (3.16)

The totally symmetric and anti-symmetric structure constants gIJK and fIJK are both

real-valued.
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assume that the totally symmetric part is non-vanishing, g
(IJK)

6= 0 , so that massless

spin-two fields have non-trivial interactions among themselves.

Hence, an interacting theory of multiple massless spin-two fields might be viable once

other fields are added and coupled to them. As the next consistency check, one can

examine the fate of the general covariance in such a theory: if there exists a genuine

metric field among these massless spin-two fields, the others should be subject to interact

covariantly with gravity. Moreover, one can also examine whether the multiple massless

spin two fields can be color decorated bona fide by carrying non-Abelian charges. In

principle, a theory can be made to covariantly interact with gravity or non-Abelian gauge

field by simply replacing all its derivatives by the covariant ones with respect to both the

di↵eomorphism transformation and the non-Abelian gauge transformation. However, as

for the di↵eomorphism-covariant interactions of higher-spin fields [40], such replacements

spoil the gauge invariance of the original system [41]. The problematic term in the gauge

variation is proportional to the curvatures, namely, Riemann tensor Rµ⌫⇢� or non-abelian

gauge field strength Fµ⌫ . In three-dimensions, fortuitously, this is not a problem as these

curvatures are just proportional to the field equations of Eintein gravity or Chern-Simons

gauge theory, respectively. In higher dimensions, these terms can be compensated by

introducing a non-trivial cosmological constant, but at the price of adding higher-derivative

interactions [42, 43].

All in all, to have a consistent interacting theory of color-decorated massless spin-two

fields, we need an (A)dS isometry gauge algebra which can be extended to an associative

one. An immediate candidate is higher spin algebra in any dimensions, since Vasiliev’s

higher-spin theory can be consistently color-decorated, as mentioned before. Other option

is to take the isometry algebras of (A)dS
3

and (A)dS
5

which are isomorphic to sl

2

� sl

2

and sl

4

and can be extended to associative ones, gl
2

� gl

2

and gl

4

by simply adding unit

elements corresponding to spin-one fields.

3 Color-Decorated (A)dS

3

Gravity: Chern-Simons Formulation

Let us now move to the explicit construction of a theory of colored gravity. In this paper,

we focus on the case of three dimensional gravity.

3.1 Color-Decorated Chern-Simons Gravity

In the uncolored case, it is known that the three-dimensional gravity can be written as a

Chern-Simons theory with the action

S[A] =


4⇡

Z
Tr

⇣
A ^ dA+

2

3
A ^A ^A

⌘
, (3.1)

for the gauge algebra sl

2

� sl

2

. The constant  is the level of Chern-Simons action. We

are interested in color-decorating this theory. Physically, this can be done by attaching

Chan-Paton factors to the gravitons. Mathematically, this amounts to requiring the fields

to take values in the tensor-product space gi ⌦ gc , where the gi is the isometry part of the

algebra including sl

2

� sl

2

and the gc is a finite-dimensional Lie algebra of a matrix group

– 4 –

• CS action:

☹ not tangible

☹ is it over?

☹ so what?
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• CS action:

☹ not tangible

☹ is it over?

☹ so what?

Let’s rewrite this in metric form!
solve torsion condition only for the genuine graviton (singlet spin two)
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In this expression, the covariant derivative D is with respect to both the Lorentz transfor-

mation and the su(N) gauge transformation:

D'a = d'a + !ab ^'b +A ^'a +'a ^A ,

D '̃a = d '̃a + !ab ^ '̃b + Ã ^ '̃a + '̃a ^ Ã . (4.9)

The last term in (4.7) is an implicit function of 'a and '̃a . It is proportional to

✏abc e
a ^ ⌦b ^ ⌦c =

1

3
✏abc e

a ^ eb ^ ec⌦
[d
,d⌦e]

,e , (4.10)

where ⌦a = ⌦b
a eb . From (4.2), they are determined to be

⌦a
b =

1

N
W a

b (', '̃) , (4.11)

where W a
b (', '̃) is given by

W a
b (', '̃) = W a

b (')�W a
b ('̃) ,

W a
b (') = 4

p
�Tr

✓
'

[a
b'c]

c � 1

4
�ba'[c

c'd]
d

◆
. (4.12)

Here, 'b
a are the components of 'a : 'a = 'b

a eb . Notice that only the term (4.10) —

which is quartic in 'a and '̃a — gives the cross couplings between '’s and '̃’s.

4.2 first-order description

Gathering all above results and replacing the dreibein ea in terms of the metric gµ⌫ , the

colored gravity action reads

S = S
CS

+
1

16⇡G

Z
d3x

p
|g|


R� V (', '̃) +

2
p
�

N `
✏µ⌫⇢Tr

⇣
'µ

�D⌫'⇢� � '̃µ
�D⌫'̃⇢�

⌘�
,

(4.13)

where the covariant derivative is given by

Dµ'⌫⇢ = rµ'⌫⇢ + [Aµ,'⌫⇢] (4.14)

and the potential function is given by

V (', '̃)

= � 1

N `2
Tr

h
2� I + 4

�
'

[µ
µ'⌫]

⌫ + '̃
[µ
µ '̃⌫]

⌫
�
+ 8

p
�
�
'

[µ
µ'⌫

⌫ '⇢]
⇢ � '̃

[µ
µ '̃⌫

⌫ '̃⇢]
⇢
� i

� 16�

N2 `2
Tr

⇣
'

[µ
⌫ '⇢]

⇢ � '̃
[µ
⌫ '̃⇢]

⇢
⌘
Tr

⇣
'

[⌫
µ'�]

� � '̃
[⌫
µ '̃�]

�
⌘

+
6�

N2 `2

h
Tr

�
'

[µ
µ'⌫]

⌫ � '̃
[µ
µ '̃⌫]

⌫
� i2

. (4.15)

The potential function consists of single-trace and double-trace parts. The single-trace

part originates from the matter action, while the double-trace part originates from solving

the torsionless conditions. For a general configuration, all terms in the potential function

contributes the same as the other terms in (4.13).

– 10 –

☟solve torsion condition☟ 
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where the covariant derivative is given by
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The potential function consists of single-trace and double-trace parts. The single-trace

part originates from the matter action, while the double-trace part originates from solving

the torsionless conditions. For a general configuration, all terms in the potential function

contributes the same as the other terms in (4.13).
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We shall first consider the colored gravity around the singlet vacuum, (A)dS
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, for which
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where the Chern-Simons level is related to the Newton’s constant G, the (A)dS
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 =
`

4N G
. (4.5)

The second term S
CS

is the doubled Chern-Simons action for su(N) � su(N) gauge

algebra:

S
CS

=

p
�

2⇡

Z 
Tr

✓
A ^ dA+

3

2
A ^A ^A

◆
� Tr

✓
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In the uncolored Chern-Simons gravity, it is unclear whether the Chern-Simons level 

has to be quantized as the gauge group is not compact. However, in the case of colored

Chern-Simons gravity, the level  should take an integer value for the consistency of S
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• SU(N) CS:
must be quantized!

☟solve torsion condition☟ 



3D Colored Gravity
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Here, 'b
a are the components of 'a : 'a = 'b

a eb . Notice that only the term (4.10) —

which is quartic in 'a and '̃a — gives the cross couplings between '’s and '̃’s.
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The potential function consists of single-trace and double-trace parts. The single-trace

part originates from the matter action, while the double-trace part originates from solving

the torsionless conditions. For a general configuration, all terms in the potential function

contributes the same as the other terms in (4.13).
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where the Chern-Simons level is related to the Newton’s constant G, the (A)dS
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In the uncolored Chern-Simons gravity, it is unclear whether the Chern-Simons level 

has to be quantized as the gauge group is not compact. However, in the case of colored

Chern-Simons gravity, the level  should take an integer value for the consistency of S
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(4.6) under a large SU(N)⇥ SU(N) gauge transformation.

The last term S
Matter

is the action for the colored massless spin-two fields 'a and '̃a .

To derive it, we use the decompositions (3.25) and (3.27), and simplify by using (4.2). We

get
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• SU(N) CS:
must be quantized!
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In the uncolored Chern-Simons gravity, it is unclear whether the Chern-Simons level 
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• Newton’s constant:

semi-classical gravity: compatible with small CS level for large N!

☟solve torsion condition☟ 



In this expression, the covariant derivative D is with respect to both the Lorentz transfor-
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D'a = d'a + !ab ^'b +A ^'a +'a ^A ,

D '̃a = d '̃a + !ab ^ '̃b + Ã ^ '̃a + '̃a ^ Ã . (4.9)
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Here, 'b
a are the components of 'a : 'a = 'b

a eb . Notice that only the term (4.10) —

which is quartic in 'a and '̃a — gives the cross couplings between '’s and '̃’s.

4.2 first-order description

Gathering all above results and replacing the dreibein ea in terms of the metric gµ⌫ , the
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(4.13)

where the covariant derivative is given by
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The potential function consists of single-trace and double-trace parts. The single-trace

part originates from the matter action, while the double-trace part originates from solving

the torsionless conditions. For a general configuration, all terms in the potential function

contributes the same as the other terms in (4.13).
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• Colored spinning matter:
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Here, 'b
a are the components of 'a : 'a = 'b

a eb . Notice that only the term (4.10) —
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The potential function consists of single-trace and double-trace parts. The single-trace

part originates from the matter action, while the double-trace part originates from solving

the torsionless conditions. For a general configuration, all terms in the potential function

contributes the same as the other terms in (4.13).
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Here, 'b
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a eb . Notice that only the term (4.10) —
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The potential function consists of single-trace and double-trace parts. The single-trace

part originates from the matter action, while the double-trace part originates from solving
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Potential

3D Colored Gravity

Matter self-interaction:         times STRONGER than gravity!

Already at this stage, the contents of the colored gravity is clearly demonstrated: it

is a theory of colored massless left-moving and right-moving spin-two fields. They interact

covariantly with the color singlet gravity and also with the Chern-Simons color gauge fields.

Moreover, they interact with each others through the potential function V (', '̃) . The self-

interaction is governed by the constant 1/N . The single-trace cubic interaction is stronger

than the gravitational cubic interaction by the factor of
p
N . Therefore, at large N and

fixed Newton’s constant , the colored massless spin-two fields will be strongly coupled to

each other.

4.3 Second-order description
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and obtain a second-order Lagrangian (although this spoils the minimal interactions to the
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In (4.17), the Lagrangian L
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where the ellipses include other tensor contractions together with higher-order terms of the

form, �n (r�)2 with n � 1 as well as couplings to the gauge fields A and Ã. We do not

attempt to obtain the complete structure of these terms.

The potential function V (�) of the colored dreibein field �µ⌫ corresponds to the ex-

tremum of

V (�, ⌧ ) = � 2�

N `2
Tr

⇣
I + �

[µ
µ�⌫]

⌫ + � ⌧
[µ
µ ⌧⌫]

⌫ + �
[µ
µ�⌫

⌫ �⇢]
⇢ + 3��

[µ
µ ⌧⌫

⌫ ⌧⇢]
⇢
⌘

� 4

N2 `2
Tr

⇣
�
[µ
⌫ ⌧⇢]

⇢ + ⌧
[µ
⌫ �⇢]

⇢
⌘
Tr

⇣
�
[⌫
µ ⌧�]

� + ⌧
[⌫
µ��]

�
⌘

+
6

N2 `2
⇥
Tr

�
�
[µ
µ ⌧⌫]

⌫
�⇤

2

, (4.19)

along the ⌧µ⌫ direction. As the extremum equation for ⌧µ⌫ is linear in ⌧µ⌫ ,

M(�) · ⌧ = 0 , (4.20)

it must be that the unique solution is ⌧µ⌫ = 0 for a generic configuration of �µ⌫
7. Pro-
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This potential has a noticeably simple form, but also has rich implications as we shall now

discuss in the next sections.
7
There can also exist nontrivial ⌧µ⌫ solutions at special values of �µ⌫ , corresponding to kernel of M in

(4.20). We relegate complete classification of these null solutions in a separate paper [24].
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Already at this stage, the contents of the colored gravity is clearly demonstrated: it

is a theory of colored massless left-moving and right-moving spin-two fields. They interact

covariantly with the color singlet gravity and also with the Chern-Simons color gauge fields.

Moreover, they interact with each others through the potential function V (', '̃) . The self-

interaction is governed by the constant 1/N . The single-trace cubic interaction is stronger

than the gravitational cubic interaction by the factor of
p
N . Therefore, at large N and

fixed Newton’s constant , the colored massless spin-two fields will be strongly coupled to

each other.

4.3 second-order description
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and obtain a second-order Lagrangian (although this spoils the minimal interactions to the
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In (4.17), the Lagrangian L
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where the ellipses include other tensor contractions together with higher-order terms of the

form, �n (r�)2 with n � 1 as well as couplings to the gauge fields A and Ã. We do not

attempt to obtain the complete structure of these terms.

The potential function V (�) of the colored dreibein field �µ⌫ corresponds to the ex-

tremum of

V (�, ⌧ ) = � 2�

N `2
Tr

⇣
I + �

[µ
µ�⌫]

⌫ + � ⌧
[µ
µ ⌧⌫]

⌫ + �
[µ
µ�⌫

⌫ �⇢]
⇢ + 3��

[µ
µ ⌧⌫

⌫ ⌧⇢]
⇢
⌘

� 4

N2 `2
Tr

⇣
�
[µ
⌫ ⌧⇢]

⇢ + ⌧
[µ
⌫ �⇢]

⇢
⌘
Tr

⇣
�
[⌫
µ ⌧�]

� + ⌧
[⌫
µ��]

�
⌘

+
6

N2 `2
⇥
Tr

�
�
[µ
µ ⌧⌫]

⌫
�⇤

2

, (4.19)

along the ⌧µ⌫ direction. As the extremum equation for ⌧µ⌫ is linear in ⌧µ⌫ ,

M(�) · ⌧ = 0 , (4.20)

it must be that the unique solution is ⌧µ⌫ = 0 for a generic configuration of �µ⌫
7. Pro-

ceeding with this situation, we end up with the cubic potential for the colored dreibein
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V (�) = � 2�

N `2
Tr

⇣
I + �

[µ
µ�⌫]

⌫ + �
[µ
µ�⌫

⌫ �⇢]
⇢
⌘
. (4.21)

This potential has a noticeably simple form, but also has rich implications as we shall now

discuss in the next sections.
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There can also exist nontrivial ⌧µ⌫ solutions at special values of �µ⌫ , corresponding to kernel of M in

(4.20). We relegate complete classification of these null solutions in a separate paper [24].
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covariantly with the color singlet gravity and also with the Chern-Simons color gauge fields.

Moreover, they interact with each others through the potential function V (', '̃) . The self-

interaction is governed by the constant 1/N . The single-trace cubic interaction is stronger

than the gravitational cubic interaction by the factor of
p
N . Therefore, at large N and

fixed Newton’s constant , the colored massless spin-two fields will be strongly coupled to

each other.

4.3 Second-order description

In principle, we could also solve the torsionless condition for the colored spin-two fields

and obtain a second-order Lagrangian (although this spoils the minimal interactions to the

su(N) gauge fields A and Ã). It amounts to taking linear combinations
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(4.20). We relegate complete classification of these null solutions in a separate paper [24].
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Closer look on Potential

In this expression, the covariant derivative D is with respect to both the Lorentz transfor-

mation and the su(N) gauge transformation:

D'a = d'a + !ab ^'b +A ^'a +'a ^A ,

D '̃a = d '̃a + !ab ^ '̃b + Ã ^ '̃a + '̃a ^ Ã . (4.9)

The last term in (4.7) is an implicit function of 'a and '̃a . It is proportional to

✏abc e
a ^ ⌦b ^ ⌦c =

1

3
✏abc e

a ^ eb ^ ec⌦
[d
,d⌦e]

,e , (4.10)

where ⌦a = ⌦b
a eb . From (4.2), they are determined to be
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b =

1

N
W a

b (', '̃) , (4.11)

where W a
b (', '̃) is given by

W a
b (', '̃) = W a
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W a
b (') = 4
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b'c]
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�ba'[c

c'd]
d

◆
. (4.12)

Here, 'b
a are the components of 'a : 'a = 'b

a eb . Notice that only the term (4.10) —

which is quartic in 'a and '̃a — gives the cross couplings between '’s and '̃’s.

4.2 first-order description

Gathering all above results and replacing the dreibein ea in terms of the metric gµ⌫ , the

colored gravity action reads

S = S
CS

+
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(4.13)

where the covariant derivative is given by

Dµ'⌫⇢ = rµ'⌫⇢ + [Aµ,'⌫⇢] (4.14)

and the potential function is given by
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The potential function consists of single-trace and double-trace parts. The single-trace

part originates from the matter action, while the double-trace part originates from solving

the torsionless conditions. For a general configuration, all terms in the potential function

contributes the same as the other terms in (4.13).
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Potential

Already at this stage, the contents of the colored gravity is clearly demonstrated: it

is a theory of colored massless left-moving and right-moving spin-two fields. They interact

covariantly with the color singlet gravity and also with the Chern-Simons color gauge fields.

Moreover, they interact with each others through the potential function V (', '̃) . The self-

interaction is governed by the constant 1/N . The single-trace cubic interaction is stronger

than the gravitational cubic interaction by the factor of
p
N . Therefore, at large N and

fixed Newton’s constant , the colored massless spin-two fields will be strongly coupled to

each other.

4.3 second-order description

In principle, we could also solve the torsionless condition for the colored spin-two fields

and obtain a second-order Lagrangian (although this spoils the minimal interactions to the

su(N) gauge fields A and Ã). It amounts to taking linear combinations

�µ⌫ =
p
� ('µ⌫ � '̃µ⌫) , ⌧µ⌫ = 'µ⌫ + '̃µ⌫ , (4.16)

and integrating out the torsion part ⌧µ⌫ , while keeping �µ⌫ . The resulting action is given

by

S = S
CS

+
1

16⇡G

Z
d3x

p
|g|

⇥
R� V (�) + L

CM

(�,r�,A, Ã)
⇤
. (4.17)

In (4.17), the Lagrangian L
CM

reads

L
CM

(�,r�,A, Ã) =
1

N
Tr

�
2�µ⌫ r2�µ⌫ + · · ·

�
, (4.18)

where the ellipses include other tensor contractions together with higher-order terms of the

form, �n (r�)2 with n � 1 as well as couplings to the gauge fields A and Ã. We do not

attempt to obtain the complete structure of these terms.

The potential function V (�) of the colored dreibein field �µ⌫ corresponds to the ex-

tremum of

V (�, ⌧ ) = � 2�
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, (4.19)

along the ⌧µ⌫ direction. As the extremum equation for ⌧µ⌫ is linear in ⌧µ⌫ ,

M(�) · ⌧ = 0 , (4.20)

it must be that the unique solution is ⌧µ⌫ = 0 for a generic configuration of �µ⌫
7. Pro-

ceeding with this situation, we end up with the cubic potential for the colored dreibein

field �µ⌫ :

V (�) = � 2�

N `2
Tr

⇣
I + �

[µ
µ�⌫]

⌫ + �
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µ�⌫
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⌘
. (4.21)

This potential has a noticeably simple form, but also has rich implications as we shall now

discuss in the next sections.
7
There can also exist nontrivial ⌧µ⌫ solutions at special values of �µ⌫ , corresponding to kernel of M in

(4.20). We relegate complete classification of these null solutions in a separate paper [24].
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Tr
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I + �
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µ�⌫]

⌫ + �
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µ�⌫
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. (4.21)

This potential has a noticeably simple form, but also has rich implications as we shall now

discuss in the next sections.
7
There can also exist nontrivial ⌧µ⌫ solutions at special values of �µ⌫ , corresponding to kernel of M in

(4.20). We relegate complete classification of these null solutions in a separate paper [24].
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5 Classical Vacuua of Colored Gravity

Having constructed the action in metric-like formulation, we now search for classical vacua

that solves the field equations of motion

� �L
CM

�gµ⌫
= Gµ⌫ �

1

2
V (�) gµ⌫ ,

�L
CM

��µ⌫
=

@V (�)

@�µ⌫
, (5.1)

� N

2
p
� `

�L
CM

�Aµ
= ✏µ⌫⇢ F⌫⇢ , � N

2
p
� `

�L
CM

�Ãµ
= ✏µ⌫⇢ F̃⌫⇢ . (5.2)

For the identification of solutions, we assume that the colored massless spin-two fields are

covariantly constant with the trivial su(N) gauge connection,

A = 0 , Ã = 0 , r⇢�µ⌫ = 0 (5.3)

This immediately implies that

�µ⌫ = gµ⌫ X for X = constant 2 su(N). (5.4)

The equations in the second line (5.2) trivialize and the rest reduce to

Gµ⌫ �
1

2
V (X) gµ⌫ = 0 and

@V (X)

@X
= 0 , (5.5)

where V (X) = V (�µ⌫ = gµ⌫ X) is given by

V (X) = � 2�

N `2
Tr

�
I + 3X2 +X3

�
. (5.6)

From (5.5), the extremum of the potential defines the e↵ective cosmological constant of

the extremum:

⇤ =
1

2
V (X) . (5.7)

Although cubic, being a matrix-valued function, the potential V (X) may admit a large

number of nontrivial extrema that depends on the color algebra su(N) . If exists, each of

such extrema will define a distinct vacuum with a di↵erent cosmological constant (5.7). As

an illustration of this potential, consider the function f(X) = 1

N Tr
�
I + 3X2 +X3

�
for

the X belonging to su(3) . The 3 ⇥ 3 matrix X can be diagonalized by a SU(3) rotation

to

X = a

"
1 0 0

0 1 0

0 0 �2

#
+ b

"
�2 0 0

0 1 0

0 0 1

#
. (5.8)

We plot the function f(a, b) in Fig.1. It clearly exhibits four extremum points: (0, 0),

(2, 0), (0, 2) and (�2,�2) . The first point at the origin gives f = 1, whereas the other

three points all give f = 9 . In fact, these three points are connected by SU(3) rotation

and hence connected in the eight dimensional space of su(3).

We now explicitly identify the extrema of potential function (5.6) for arbitrary value

of N . The extremum points are defined by the equation:

�V (X) = � 6�

N `2
Tr

⇥
(2X +X2) �X

⇤
= 0 . (5.9)
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Closer look on Potential

In this expression, the covariant derivative D is with respect to both the Lorentz transfor-

mation and the su(N) gauge transformation:

D'a = d'a + !ab ^'b +A ^'a +'a ^A ,

D '̃a = d '̃a + !ab ^ '̃b + Ã ^ '̃a + '̃a ^ Ã . (4.9)

The last term in (4.7) is an implicit function of 'a and '̃a . It is proportional to

✏abc e
a ^ ⌦b ^ ⌦c =

1

3
✏abc e

a ^ eb ^ ec⌦
[d
,d⌦e]

,e , (4.10)

where ⌦a = ⌦b
a eb . From (4.2), they are determined to be

⌦a
b =

1

N
W a

b (', '̃) , (4.11)

where W a
b (', '̃) is given by

W a
b (', '̃) = W a

b (')�W a
b ('̃) ,

W a
b (') = 4

p
�Tr

✓
'

[a
b'c]

c � 1

4
�ba'[c

c'd]
d

◆
. (4.12)

Here, 'b
a are the components of 'a : 'a = 'b

a eb . Notice that only the term (4.10) —

which is quartic in 'a and '̃a — gives the cross couplings between '’s and '̃’s.

4.2 first-order description

Gathering all above results and replacing the dreibein ea in terms of the metric gµ⌫ , the

colored gravity action reads

S = S
CS

+
1

16⇡G

Z
d3x

p
|g|


R� V (', '̃) +

2
p
�

N `
✏µ⌫⇢Tr

⇣
'µ

�D⌫'⇢� � '̃µ
�D⌫'̃⇢�

⌘�
,

(4.13)

where the covariant derivative is given by

Dµ'⌫⇢ = rµ'⌫⇢ + [Aµ,'⌫⇢] (4.14)

and the potential function is given by

V (', '̃)

= � 1

N `2
Tr

h
2� I + 4

�
'

[µ
µ'⌫]

⌫ + '̃
[µ
µ '̃⌫]

⌫
�
+ 8

p
�
�
'

[µ
µ'⌫

⌫ '⇢]
⇢ � '̃

[µ
µ '̃⌫

⌫ '̃⇢]
⇢
� i

� 16�

N2 `2
Tr

⇣
'

[µ
⌫ '⇢]

⇢ � '̃
[µ
⌫ '̃⇢]

⇢
⌘
Tr

⇣
'

[⌫
µ'�]

� � '̃
[⌫
µ '̃�]

�
⌘

+
6�

N2 `2

h
Tr

�
'

[µ
µ'⌫]

⌫ � '̃
[µ
µ '̃⌫]

⌫
� i2

. (4.15)

The potential function consists of single-trace and double-trace parts. The single-trace

part originates from the matter action, while the double-trace part originates from solving

the torsionless conditions. For a general configuration, all terms in the potential function

contributes the same as the other terms in (4.13).
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Potential

Already at this stage, the contents of the colored gravity is clearly demonstrated: it

is a theory of colored massless left-moving and right-moving spin-two fields. They interact

covariantly with the color singlet gravity and also with the Chern-Simons color gauge fields.

Moreover, they interact with each others through the potential function V (', '̃) . The self-

interaction is governed by the constant 1/N . The single-trace cubic interaction is stronger

than the gravitational cubic interaction by the factor of
p
N . Therefore, at large N and

fixed Newton’s constant , the colored massless spin-two fields will be strongly coupled to

each other.

4.3 second-order description

In principle, we could also solve the torsionless condition for the colored spin-two fields

and obtain a second-order Lagrangian (although this spoils the minimal interactions to the

su(N) gauge fields A and Ã). It amounts to taking linear combinations

�µ⌫ =
p
� ('µ⌫ � '̃µ⌫) , ⌧µ⌫ = 'µ⌫ + '̃µ⌫ , (4.16)

and integrating out the torsion part ⌧µ⌫ , while keeping �µ⌫ . The resulting action is given

by

S = S
CS

+
1

16⇡G

Z
d3x

p
|g|

⇥
R� V (�) + L

CM

(�,r�,A, Ã)
⇤
. (4.17)

In (4.17), the Lagrangian L
CM

reads

L
CM

(�,r�,A, Ã) =
1

N
Tr

�
2�µ⌫ r2�µ⌫ + · · ·

�
, (4.18)

where the ellipses include other tensor contractions together with higher-order terms of the

form, �n (r�)2 with n � 1 as well as couplings to the gauge fields A and Ã. We do not

attempt to obtain the complete structure of these terms.

The potential function V (�) of the colored dreibein field �µ⌫ corresponds to the ex-

tremum of

V (�, ⌧ ) = � 2�

N `2
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[µ
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⌫ + � ⌧
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⌘
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, (4.19)

along the ⌧µ⌫ direction. As the extremum equation for ⌧µ⌫ is linear in ⌧µ⌫ ,

M(�) · ⌧ = 0 , (4.20)

it must be that the unique solution is ⌧µ⌫ = 0 for a generic configuration of �µ⌫
7. Pro-

ceeding with this situation, we end up with the cubic potential for the colored dreibein

field �µ⌫ :
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. (4.21)

This potential has a noticeably simple form, but also has rich implications as we shall now

discuss in the next sections.
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There can also exist nontrivial ⌧µ⌫ solutions at special values of �µ⌫ , corresponding to kernel of M in

(4.20). We relegate complete classification of these null solutions in a separate paper [24].
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along the ⌧µ⌫ direction. As the extremum equation for ⌧µ⌫ is linear in ⌧µ⌫ ,

M(�) · ⌧ = 0 , (4.20)

it must be that the unique solution is ⌧µ⌫ = 0 for a generic configuration of �µ⌫
7. Pro-

ceeding with this situation, we end up with the cubic potential for the colored dreibein

field �µ⌫ :
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. (4.21)

This potential has a noticeably simple form, but also has rich implications as we shall now

discuss in the next sections.
7
There can also exist nontrivial ⌧µ⌫ solutions at special values of �µ⌫ , corresponding to kernel of M in

(4.20). We relegate complete classification of these null solutions in a separate paper [24].
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5 Classical Vacuua of Colored Gravity

Having constructed the action in metric-like formulation, we now search for classical vacua

that solves the field equations of motion

� �L
CM

�gµ⌫
= Gµ⌫ �

1

2
V (�) gµ⌫ ,

�L
CM

��µ⌫
=

@V (�)

@�µ⌫
, (5.1)

� N

2
p
� `

�L
CM

�Aµ
= ✏µ⌫⇢ F⌫⇢ , � N

2
p
� `

�L
CM

�Ãµ
= ✏µ⌫⇢ F̃⌫⇢ . (5.2)

For the identification of solutions, we assume that the colored massless spin-two fields are

covariantly constant with the trivial su(N) gauge connection,

A = 0 , Ã = 0 , r⇢�µ⌫ = 0 (5.3)

This immediately implies that

�µ⌫ = gµ⌫ X for X = constant 2 su(N). (5.4)

The equations in the second line (5.2) trivialize and the rest reduce to

Gµ⌫ �
1

2
V (X) gµ⌫ = 0 and

@V (X)

@X
= 0 , (5.5)

where V (X) = V (�µ⌫ = gµ⌫ X) is given by

V (X) = � 2�

N `2
Tr

�
I + 3X2 +X3

�
. (5.6)

From (5.5), the extremum of the potential defines the e↵ective cosmological constant of

the extremum:

⇤ =
1

2
V (X) . (5.7)

Although cubic, being a matrix-valued function, the potential V (X) may admit a large

number of nontrivial extrema that depends on the color algebra su(N) . If exists, each of

such extrema will define a distinct vacuum with a di↵erent cosmological constant (5.7). As

an illustration of this potential, consider the function f(X) = 1

N Tr
�
I + 3X2 +X3

�
for

the X belonging to su(3) . The 3 ⇥ 3 matrix X can be diagonalized by a SU(3) rotation

to

X = a

"
1 0 0

0 1 0

0 0 �2

#
+ b

"
�2 0 0

0 1 0

0 0 1

#
. (5.8)

We plot the function f(a, b) in Fig.1. It clearly exhibits four extremum points: (0, 0),

(2, 0), (0, 2) and (�2,�2) . The first point at the origin gives f = 1, whereas the other

three points all give f = 9 . In fact, these three points are connected by SU(3) rotation

and hence connected in the eight dimensional space of su(3).

We now explicitly identify the extrema of potential function (5.6) for arbitrary value

of N . The extremum points are defined by the equation:

�V (X) = � 6�

N `2
Tr

⇥
(2X +X2) �X

⇤
= 0 . (5.9)
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Figure 1. The shape of the potential function for su(3).

Since X is traceless, it also follows that �X is also traceless. Thus, for finite N , it must

be that

2X +X2 =
1

N
Tr

�
2X +X2

�
I . (5.10)

Since Tr (I +X)2 6= 0 — otherwise it would follow from (5.10) that the matrix I +X is

nilpotent while having a non-trivial trace — one can redefine the matrix X in terms of Z :

Z =

s
N

Tr(I +X)2
(I +X) , equivalently, X =

N

Tr(Z)
Z � I 2 su(N), (5.11)

and simplify the equation (5.10) as

Z2 = I . (5.12)

Complete solutions of this equation, up to SU(N) rotations, are given by

Zk =

"
I(N�k)⇥(N�k) 0

0 �Ik⇥k

#
, k = 0, 1, . . . ,

⇥
N�1

2

⇤
. (5.13)

where the upper bound of k is fixed by [N�1

2

] due to the property that XN�k is a SU(N)

rotation of Xk . Notice also that, when N is even, k = N
2

is excluded since it leads to
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The equations in the second line (5.2) trivialize and the rest reduce to

Gµ⌫ �
1

2
V (X) gµ⌫ = 0 and

@V (X)

@X
= 0 , (5.5)

where V (X) = V (�µ⌫ = gµ⌫ X) is given by

V (X) = � 2�

N `2
Tr

�
I + 3X2 +X3

�
. (5.6)

From (5.5), the extremum of the potential defines the e↵ective cosmological constant of
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V (X) . (5.7)

Although cubic, being a matrix-valued function, the potential V (X) may admit a large

number of nontrivial extrema that depends on the color algebra su(N) . If exists, each of

such extrema will define a distinct vacuum with a di↵erent cosmological constant (5.7). As

an illustration of this potential, consider the function f(X) = 1

N Tr
�
I + 3X2 +X3
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for

the X belonging to su(3) . The 3 ⇥ 3 matrix X can be diagonalized by a SU(3) rotation

to
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We plot the function f(a, b) in Fig.1. It clearly exhibits four extremum points: (0, 0),

(2, 0), (0, 2) and (�2,�2) . The first point at the origin gives f = 1, whereas the other

three points all give f = 9 . In fact, these three points are connected by SU(3) rotation

and hence connected in the eight dimensional space of su(3).

We now explicitly identify the extrema of potential function (5.6) for arbitrary value

of N . The extremum points are defined by the equation:

�V (X) = � 6�

N `2
Tr

⇥
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Since X is traceless, it also follows that �X is also traceless. Thus, for finite N , it must

be that
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2X +X2
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I . (5.10)

Since Tr (I +X)2 6= 0 — otherwise it would follow from (5.10) that the matrix I +X is

nilpotent while having a non-trivial trace — one can redefine the matrix X in terms of Z :

Z =

s
N

Tr(I +X)2
(I +X) , equivalently, X =

N

Tr(Z)
Z � I 2 su(N), (5.11)

and simplify the equation (5.10) as

Z2 = I . (5.12)

Complete solutions of this equation, up to SU(N) rotations, are given by

Zk =

"
I(N�k)⇥(N�k) 0

0 �Ik⇥k

#
, k = 0, 1, . . . ,

⇥
N�1

2
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. (5.13)

where the upper bound of k is fixed by [N�1

2

] due to the property that XN�k is a SU(N)

rotation of Xk . Notice also that, when N is even, k = N
2

is excluded since it leads to
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5 Classical Vacuua of Colored Gravity

Having constructed the action in metric-like formulation, we now search for classical vacua

that solves the field equations of motion
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For the identification of solutions, we assume that the colored massless spin-two fields are

covariantly constant with the trivial su(N) gauge connection,

A = 0 , Ã = 0 , r⇢�µ⌫ = 0 (5.3)

This immediately implies that

�µ⌫ = gµ⌫ X for X = constant 2 su(N). (5.4)

The equations in the second line (5.2) trivialize and the rest reduce to
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From (5.5), the extremum of the potential defines the e↵ective cosmological constant of

the extremum:
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V (X) . (5.7)

Although cubic, being a matrix-valued function, the potential V (X) may admit a large

number of nontrivial extrema that depends on the color algebra su(N) . If exists, each of

such extrema will define a distinct vacuum with a di↵erent cosmological constant (5.7). As

an illustration of this potential, consider the function f(X) = 1

N Tr
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I + 3X2 +X3

�
for

the X belonging to su(3) . The 3 ⇥ 3 matrix X can be diagonalized by a SU(3) rotation

to
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We plot the function f(a, b) in Fig.1. It clearly exhibits four extremum points: (0, 0),

(2, 0), (0, 2) and (�2,�2) . The first point at the origin gives f = 1, whereas the other

three points all give f = 9 . In fact, these three points are connected by SU(3) rotation

and hence connected in the eight dimensional space of su(3).

We now explicitly identify the extrema of potential function (5.6) for arbitrary value

of N . The extremum points are defined by the equation:
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• extremum values:

Tr(Z) = 0 for which X is ill-defined. Plugging the solutions (5.13) to the potential, we

can identify the values of the potential at the extrema as
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These values play the role of the e↵ective cosmological constant at k-th extremum, accord-

ing to (5.7).

6 Rainbow Vacua of Colored Gravity

We learned that there are [N+1

2

] many distinct vacua having di↵erent e↵ective cosmological

constants. In this section, we study the colored gravity around each of these vacua and

analyze the particle spectrum contents at each vacuum.

6.1 Decomposition of Associative Algebra

For an e�cient treatment of the colored gravity at each distinct vacuum in the Chern-

Simons formulation, it is important to identify the proper decomposition of the algebra

(3.5). For that, we revisit the isometry and the color algebra decompositions. The isometry

algebra can be divided into the rotation part M and the translation part P as

iso = M� P , (6.1)

the same as the trivial vacuum. For the color algebra, each vacuum spontaneously breaks

the Chan-Paton su(N) gauge symmetry down to su(k)� su(N � k)� u(1), and hence the

original algebra admits the decomposition:

su(N) ' su(N � k)� su(k)� u(1)� bs . (6.2)

Here, bs is the vector space corresponding to the broken symmetry, spanned by 2k(N � k)

generators. It is important to note that each part commutes or anti-commutes with the

background matrix Zk (5.13) as
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We now decompose the entire algebra (3.3) according to (3.5) in terms of the gravity

plus gauge sector b and the matter sector c . The former has again two parts similarly to

the singlet vacuum case as b = b
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Gauge
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Compared to the trivial vacuum k = 0, the associative algebra of k 6= 0 vacua di↵er in

both sectors. The gauge sector is concerned only with the unbroken part of the color

algebra. The algebra of the gravity sector is deformed by Zk , but still satisfies the same

commutation relations with the generators:

Mab = Mab I , Pa = PaZk . (6.5)
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Since Tr (I +X)2 6= 0 — otherwise it would follow from (5.10) that the matrix I +X is

nilpotent while having a non-trivial trace — one can redefine the matrix X in terms of Z :

Z =
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(I +X) , equivalently, X =
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and simplify the equation (5.10) as
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Complete solutions of this equation, up to SU(N) rotations, are given by
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] due to the property that XN�k is a SU(N)
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is excluded since it leads to
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• solutions up to SU(N) rotation:

Parameter

• extremum values:

Tr(Z) = 0 for which X is ill-defined. Plugging the solutions (5.13) to the potential, we

can identify the values of the potential at the extrema as

V (Xk) = �2�
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Tr (Zk)

◆
2

= �2�
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✓
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. (5.14)

These values play the role of the e↵ective cosmological constant at k-th extremum, accord-

ing to (5.7).

6 Rainbow Vacua of Colored Gravity

We learned that there are [N+1

2

] many distinct vacua having di↵erent e↵ective cosmological

constants. In this section, we study the colored gravity around each of these vacua and

analyze the particle spectrum contents at each vacuum.

6.1 Decomposition of Associative Algebra

For an e�cient treatment of the colored gravity at each distinct vacuum in the Chern-

Simons formulation, it is important to identify the proper decomposition of the algebra

(3.5). For that, we revisit the isometry and the color algebra decompositions. The isometry

algebra can be divided into the rotation part M and the translation part P as

iso = M� P , (6.1)

the same as the trivial vacuum. For the color algebra, each vacuum spontaneously breaks

the Chan-Paton su(N) gauge symmetry down to su(k)� su(N � k)� u(1), and hence the

original algebra admits the decomposition:

su(N) ' su(N � k)� su(k)� u(1)� bs . (6.2)

Here, bs is the vector space corresponding to the broken symmetry, spanned by 2k(N � k)

generators. It is important to note that each part commutes or anti-commutes with the

background matrix Zk (5.13) as

⇥
Zk , su(N � k)� su(k)� u(1)

⇤
= 0 ,

�
Zk , bs

 
= 0 . (6.3)

We now decompose the entire algebra (3.3) according to (3.5) in terms of the gravity

plus gauge sector b and the matter sector c . The former has again two parts similarly to

the singlet vacuum case as b = b

GR

� b

Gauge

, but the algebras to which the gravity and

the gauge sectors correspond di↵er from (3.20) by

b

GR

=
�
M⌦ I

�
�
�
P ⌦Zk

�
, b

Gauge

= id⌦
⇣
su(N � k)� su(k)� u(1)

⌘
. (6.4)

Compared to the trivial vacuum k = 0, the associative algebra of k 6= 0 vacua di↵er in

both sectors. The gauge sector is concerned only with the unbroken part of the color

algebra. The algebra of the gravity sector is deformed by Zk , but still satisfies the same

commutation relations with the generators:

Mab = Mab I , Pa = PaZk . (6.5)
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Figure 3. Potential of the colored gravity in dS (N = 15): k is the parameter of a curve in su(15)
that passes through the extremum points.

where X is a collection of tensor-valued constant (N ⇥N) Hermitian matrix. It would be

interesting to explore an initio definition of the three-dimensional quantum gravity starting

from this class of matrix models.

This work brings in many open problem worth of further investigation. As already

mentioned in Section 1, extensions to higher-spin (A)dS
3

gravity and supergravity is im-

minent. Further extensions to color-decoration of the known higher-spin gravity in three-

dimensional Lifshitz spacetime [44]and flat spacetime [45] are also straightforward. Exten-

sion to higher-dimensional spacetime is also highly interesting. A version of such situation

was already studied in the context of AdS/CFT correspondence [46]. Vasiliev equations

for color-decorated higher-spin theories needs to be better understood, along with higher-

dimensional counterpart of the stairstep potential we found in three dimensions. As the

color dynamics is described by Chern-Simons gauge theory, one might anticipate to formu-

late colored gravity in any dimensions in terms of a version of Chern-Simons formulation,

perhaps, along the lines of [47] and [48]. Quantum aspects of color-decorated gravity is an

avenue to be explored, in particular, consequences and implications of strong color inter-

actions among colored spin-two fields. Turning to the inflationary cosmology, it would be

interesting how the color-decoration modifies the infrared dynamics of interacting massless

spin-two fields at super-horizon scales. This brings one to investigate stochastic dynamics

of these fields, as would be described by color-decorated version of the Langevin dynamics

[49, 50].
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Having constructed the action in metric-like formulation, we now search for classical vacua

that solves the field equations of motion
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For the identification of solutions, we assume that the colored massless spin-two fields are

covariantly constant with the trivial su(N) gauge connection,

A = 0 , Ã = 0 , r⇢�µ⌫ = 0 (5.3)

This immediately implies that

�µ⌫ = gµ⌫ X for X = constant 2 su(N). (5.4)

The equations in the second line (5.2) trivialize and the rest reduce to

Gµ⌫ �
1

2
V (X) gµ⌫ = 0 and
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= 0 , (5.5)

where V (X) = V (�µ⌫ = gµ⌫ X) is given by

V (X) = � 2�
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I + 3X2 +X3

�
. (5.6)

From (5.5), the extremum of the potential defines the e↵ective cosmological constant of

the extremum:

⇤ =
1

2
V (X) . (5.7)

Although cubic, being a matrix-valued function, the potential V (X) may admit a large

number of nontrivial extrema that depends on the color algebra su(N) . If exists, each of

such extrema will define a distinct vacuum with a di↵erent cosmological constant (5.7). As

an illustration of this potential, consider the function f(X) = 1

N Tr
�
I + 3X2 +X3

�
for

the X belonging to su(3) . The 3 ⇥ 3 matrix X can be diagonalized by a SU(3) rotation

to

X = a

"
1 0 0

0 1 0

0 0 �2

#
+ b

"
�2 0 0

0 1 0

0 0 1

#
. (5.8)

We plot the function f(a, b) in Fig.1. It clearly exhibits four extremum points: (0, 0),

(2, 0), (0, 2) and (�2,�2) . The first point at the origin gives f = 1, whereas the other

three points all give f = 9 . In fact, these three points are connected by SU(3) rotation

and hence connected in the eight dimensional space of su(3).

We now explicitly identify the extrema of potential function (5.6) for arbitrary value

of N . The extremum points are defined by the equation:

�V (X) = � 6�

N `2
Tr

⇥
(2X +X2) �X

⇤
= 0 . (5.9)
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The equations in the second line (5.2) trivialize and the rest reduce to

Gµ⌫ �
1

2
V (X) gµ⌫ = 0 and

@V (X)

@X
= 0 , (5.5)

where V (X) = V (�µ⌫ = gµ⌫ X) is given by

V (X) = � 2�

N `2
Tr

�
I + 3X2 +X3

�
. (5.6)

From (5.5), the extremum of the potential defines the e↵ective cosmological constant of

the extremum:

⇤ =
1

2
V (X) . (5.7)

Although cubic, being a matrix-valued function, the potential V (X) may admit a large

number of nontrivial extrema that depends on the color algebra su(N) . If exists, each of

such extrema will define a distinct vacuum with a di↵erent cosmological constant (5.7). As

an illustration of this potential, consider the function f(X) = 1

N Tr
�
I + 3X2 +X3

�
for

the X belonging to su(3) . The 3 ⇥ 3 matrix X can be diagonalized by a SU(3) rotation
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X = a

"
1 0 0

0 1 0

0 0 �2

#
+ b

"
�2 0 0

0 1 0

0 0 1

#
. (5.8)

We plot the function f(a, b) in Fig.1. It clearly exhibits four extremum points: (0, 0),

(2, 0), (0, 2) and (�2,�2) . The first point at the origin gives f = 1, whereas the other
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We now explicitly identify the extrema of potential function (5.6) for arbitrary value
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�V (X) = � 6�

N `2
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⇥
(2X +X2) �X

⇤
= 0 . (5.9)
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Symmetry Breaking 

The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k

⇣
 

a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
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=
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`k
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�J + �a Ja + �̃ J̃ + �̃a J̃a
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, (6.19)
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sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also
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2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =
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(��̃, �̃a

,��,�a) [� = +1]

(��,�a
,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action

S

Gravity

=
1

16⇡G

Z
d

3

x

p
|g|

✓
R+

2�

`

2

k

◆
, (6.22)
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This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:
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= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate
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’s. For instance,
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compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).
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The second element c
NM
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c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
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=
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Yk Zk , (6.16)
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GR
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) = 0, equivalently,
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J Yk Zk
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= 0 = Tr
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. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
BS

=
1
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⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a
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, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
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. (6.20)
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compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action

S

Gravity

=
1

16⇡G

Z
d

3

x

p
|g|

✓
R+

2�

`

2

k

◆
, (6.22)

– 16 –

The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM
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c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1
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⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR
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) = 0, equivalently,

Tr
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J Yk Zk
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= 0 = Tr
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J̃ Yk Zk
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. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
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=
1
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�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
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. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:
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, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]
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,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).
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The fields 'a
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take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1
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Yk Zk , (6.16)
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) = 0, equivalently,
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. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by
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, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
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. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:
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(
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, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).
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� and '̃a
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This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:
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= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by
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where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl
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compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).
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This part describes a color neutral, massless spin-two field.

The last element c
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Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate
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This part describes a color neutral, massless spin-two field.
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Unlike the above parts, this part does not describe massless spin-two fields. Rather, it
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in the following. The corresponding one form is given by
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� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k

⇣
 

a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
BS

=
1

`k

⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]

(��,�a
,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action

S

Gravity

=
1

16⇡G

Z
d

3

x

p
|g|

✓
R+

2�

`

2

k

◆
, (6.22)

– 16 –

N � k k

• Diagonal parts:

• Broken-sym. part:

SU(N � k)⇥ SU(k)⇥ U(1)‣ adjoint in  

‣ still describe massless spin-two



Symmetry Breaking 

The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k

⇣
 

a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
BS

=
1

`k

⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]

(��,�a
,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action
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Z
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|g|

✓
R+

2�

`

2

k

◆
, (6.22)

– 16 –

The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k

⇣
 

a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
BS

=
1

`k

⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]

(��,�a
,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action
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Z
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|g|
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The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k

⇣
 

a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
BS

=
1

`k

⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]

(��,�a
,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action
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Z
d

3

x

p
|g|
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The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k

⇣
 

a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
BS

=
1

`k

⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]

(��,�a
,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action
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Z
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The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k

⇣
 

a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
BS

=
1

`k

⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]

(��,�a
,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action
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N � k k

• Diagonal parts:

• Broken-sym. part:

SU(N � k)⇥ SU(k)⇥ U(1)‣ adjoint in  

‣ still describe massless spin-two

‣ bi-fundamental



Symmetry Breaking 

The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k

⇣
 

a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
BS

=
1

`k

⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]

(��,�a
,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action
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The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k

⇣
 

a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
BS

=
1

`k

⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]

(��,�a
,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action
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The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k

⇣
 

a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
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=
1

`k

⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]

(��,�a
,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action
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The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k

⇣
 

a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
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J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
BS

=
1

`k

⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:
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, �̃, �̃a)† =
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, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).
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The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)
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⇣
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Yk Zk , (6.16)
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�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by
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�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
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. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
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(
(��̃, �̃a

,��,�a) [� = +1]
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,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action
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N � k k

• Diagonal parts:

• Broken-sym. part:

SU(N � k)⇥ SU(k)⇥ U(1)‣ adjoint in  

‣ still describe massless spin-two

6.3 Spectra of Broken Color Symmetry Parts

Around the non-singlet vacua, the fields '± and  both describe massless spin-two fields

having the same quadratic Lagrangian given by (4.9). On the other hand, the fields � cor-

responding to the broken part of the color symmetries have di↵erent quadratic Lagrangian

(6.24), hence describe di↵erent spectra. We have already mentioned that they correspond

to partially massless particles [29–32, 32, 33]. In this section, we analyze the quadratic

Lagrangian (6.24) to prove this statement. Here, we mainly concentrate on AdS
3

. To get

the dS
3

result, we just change the AdS radius to
p
�1 times dS radius.

Though the Lagrangian (6.24) has a rather non-standard form involving cross term

between � and �̃ together with an insertion of Zk , it can always be diagonalized with the

help of the Hermicity property (6.21). Therefore, for the spectrum analysis, it will su�ce

to consider SBS[�,�a] taking the following expression:

SBS[�,�
a] =

Z
� ^

✓
d�� 1

`
ea ^ �a

◆
� �a ^

✓
D�a � 1

`
ea ^ �

◆
(6.29)

with the (A)dS dreibein and spin connection (ea,!ab) . We first note that this action admits

the gauge symmetries with parameters (", "a) ,

� � = d "� 1

`
ea "a , � �a = D "a � 1

`
ea " . (6.30)

They are inherited from the Chern-Simons gauge symmetries.

For a closer look of this action involving three fields hµ⌫ = ea
(µ �⌫)a , fµ⌫ = ea

[µ �⌫]a
and �µ = eaµ �a, we consider two di↵erent but equivalent paths:

• We first derive the equation of motion for one-form fields �a and � . They are given

by

D�a � 1

`
ea ^ � = 0 , d�� 1

`
ea ^ �a = 0 . (6.31)

The second equation implies that the antisymmetric field fµ⌫ is the field strength of

�µ : fµ⌫ = ` @
[µ�⌫] . Then, by gauge fixing �µ to zero with the gauge parameter "a,

the field fµ⌫ decouples from the first equation. We thus end up with only one field

hµ⌫ satisfying the equation of motion,

r
[µh⌫]⇢ = 0 , (6.32)

and the gauge symmetry,

� hµ⌫ = r
(µ @⌫) "�

1

`2
gµ⌫ " . (6.33)

This gauge symmetry is precisely the gauge symmetry of partially massless spin-two

field [29–32, 32, 33].

• Instead of first deriving the equation and then gauge fixing to �µ = 0 , one can reverse

the procedure. We first gauge fix and eliminate �µ field in the action and obtain

SPM[�µ⌫ ] =

Z
d3x

p
|g| ✏µ⌫⇢ ��µr⌫ �⇢� , (6.34)
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The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k

⇣
 

a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
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⇣
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⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]

(��,�a
,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action

S

Gravity
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The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k

⇣
 

a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by
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⇣
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⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]
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,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action
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The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k
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a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk
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. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
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1
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⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:
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, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]
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,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).
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The fields 'a
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and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
NM

=
1

`k
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a Ja +  ̃

a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
J Yk Zk

�
= 0 = Tr

�
J̃ Yk Zk

�
. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
BS

=
1

`k

⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:
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, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]
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,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).
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The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads

C
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=
1
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a J̃a

⌘
Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM
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J Yk Zk
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. (6.17)

This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by

C
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1
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⇣
�J + �a Ja + �̃ J̃ + �̃a J̃a

⌘
, (6.19)

where the fields �a, �, �̃a and �̃ take values in bs , carrying the bi-fundamental repre-

sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
a
. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =

(
(��̃, �̃a

,��,�a) [� = +1]

(��,�a
,��̃, �̃a) [� = �1]

, (6.21)

compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).

Firstly, we have the standard gravity action
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N � k k

• Diagonal parts:

• Broken-sym. part:

SU(N � k)⇥ SU(k)⇥ U(1)‣ adjoint in  

‣ still describe massless spin-two

6.3 Spectra of Broken Color Symmetry Parts

Around the non-singlet vacua, the fields '± and  both describe massless spin-two fields

having the same quadratic Lagrangian given by (4.9). On the other hand, the fields � cor-

responding to the broken part of the color symmetries have di↵erent quadratic Lagrangian

(6.24), hence describe di↵erent spectra. We have already mentioned that they correspond

to partially massless particles [29–32, 32, 33]. In this section, we analyze the quadratic

Lagrangian (6.24) to prove this statement. Here, we mainly concentrate on AdS
3

. To get

the dS
3

result, we just change the AdS radius to
p
�1 times dS radius.

Though the Lagrangian (6.24) has a rather non-standard form involving cross term

between � and �̃ together with an insertion of Zk , it can always be diagonalized with the

help of the Hermicity property (6.21). Therefore, for the spectrum analysis, it will su�ce

to consider SBS[�,�a] taking the following expression:

SBS[�,�
a] =

Z
� ^

✓
d�� 1

`
ea ^ �a

◆
� �a ^

✓
D�a � 1

`
ea ^ �

◆
(6.29)

with the (A)dS dreibein and spin connection (ea,!ab) . We first note that this action admits

the gauge symmetries with parameters (", "a) ,

� � = d "� 1

`
ea "a , � �a = D "a � 1

`
ea " . (6.30)

They are inherited from the Chern-Simons gauge symmetries.

For a closer look of this action involving three fields hµ⌫ = ea
(µ �⌫)a , fµ⌫ = ea

[µ �⌫]a
and �µ = eaµ �a, we consider two di↵erent but equivalent paths:

• We first derive the equation of motion for one-form fields �a and � . They are given

by

D�a � 1

`
ea ^ � = 0 , d�� 1

`
ea ^ �a = 0 . (6.31)

The second equation implies that the antisymmetric field fµ⌫ is the field strength of

�µ : fµ⌫ = ` @
[µ�⌫] . Then, by gauge fixing �µ to zero with the gauge parameter "a,

the field fµ⌫ decouples from the first equation. We thus end up with only one field

hµ⌫ satisfying the equation of motion,

r
[µh⌫]⇢ = 0 , (6.32)

and the gauge symmetry,

� hµ⌫ = r
(µ @⌫) "�

1

`2
gµ⌫ " . (6.33)

This gauge symmetry is precisely the gauge symmetry of partially massless spin-two

field [29–32, 32, 33].

• Instead of first deriving the equation and then gauge fixing to �µ = 0 , one can reverse

the procedure. We first gauge fix and eliminate �µ field in the action and obtain

SPM[�µ⌫ ] =

Z
d3x

p
|g| ✏µ⌫⇢ ��µr⌫ �⇢� , (6.34)
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The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
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corresponds to the other color singlet:

c
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which is linearly independent of the gravity sector. The associated one form reads
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This part describes a color neutral, massless spin-two field.

The last element c
BS

is what corresponds to the broken part of the color symmetries:

c
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= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by
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sentations of su(N � k) and su(k) . Because these fields anti-commute with Zk , they also

intertwine the left-moving and the right-moving gl

2

’s. For instance,

�a Jb = J̃b�
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. (6.20)

As a consequence, they transform di↵erently under Hermitian conjugate:

(�,�a
, �̃, �̃a)† =
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compared to the massless ones (3.28).

6.2 Colored Gravity around Non-Singlet Vacua

With the precise form of one form fields (6.6, 6.14, 6.16, 6.19), we now rewrite the Chern-

Simons action into a metric-like form. It is given by the sum of three terms as in (4.3).
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The fields 'a
+

and '̃a
+

take values in su(N � k), whereas 'a
� and '̃a

� in su(k) , both

transforming in the adjoint representations.

The second element c
NM

corresponds to the other color singlet:

c

NM

= iso⌦ u(1) , (6.15)

which is linearly independent of the gravity sector. The associated one form reads
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NM

=
1
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Yk Zk , (6.16)

where the last matrix factor Yk Zk is inserted to ensure Tr(b
GR

c

NM

) = 0, equivalently,

Tr
�
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J̃ Yk Zk
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This part describes a color neutral, massless spin-two field.

The last element c
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is what corresponds to the broken part of the color symmetries:

c

BS

= (id� iso)⌦ bs . (6.18)

Unlike the above parts, this part does not describe massless spin-two fields. Rather, it

describes so-called partially-massless [29–32, 32, 33] spin-two fields, as we shall demonstrate

in the following. The corresponding one form is given by
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N � k k

• Diagonal parts:

• Broken-sym. part:

SU(N � k)⇥ SU(k)⇥ U(1)‣ adjoint in  

‣ still describe massless spin-two

6.3 Spectra of Broken Color Symmetry Parts

Around the non-singlet vacua, the fields '± and  both describe massless spin-two fields

having the same quadratic Lagrangian given by (4.9). On the other hand, the fields � cor-

responding to the broken part of the color symmetries have di↵erent quadratic Lagrangian

(6.24), hence describe di↵erent spectra. We have already mentioned that they correspond

to partially massless particles [29–32, 32, 33]. In this section, we analyze the quadratic

Lagrangian (6.24) to prove this statement. Here, we mainly concentrate on AdS
3

. To get

the dS
3

result, we just change the AdS radius to
p
�1 times dS radius.

Though the Lagrangian (6.24) has a rather non-standard form involving cross term

between � and �̃ together with an insertion of Zk , it can always be diagonalized with the

help of the Hermicity property (6.21). Therefore, for the spectrum analysis, it will su�ce

to consider SBS[�,�a] taking the following expression:

SBS[�,�
a] =

Z
� ^

✓
d�� 1

`
ea ^ �a

◆
� �a ^

✓
D�a � 1

`
ea ^ �

◆
(6.29)

with the (A)dS dreibein and spin connection (ea,!ab) . We first note that this action admits

the gauge symmetries with parameters (", "a) ,

� � = d "� 1

`
ea "a , � �a = D "a � 1

`
ea " . (6.30)

They are inherited from the Chern-Simons gauge symmetries.

For a closer look of this action involving three fields hµ⌫ = ea
(µ �⌫)a , fµ⌫ = ea

[µ �⌫]a
and �µ = eaµ �a, we consider two di↵erent but equivalent paths:

• We first derive the equation of motion for one-form fields �a and � . They are given

by

D�a � 1

`
ea ^ � = 0 , d�� 1

`
ea ^ �a = 0 . (6.31)

The second equation implies that the antisymmetric field fµ⌫ is the field strength of

�µ : fµ⌫ = ` @
[µ�⌫] . Then, by gauge fixing �µ to zero with the gauge parameter "a,

the field fµ⌫ decouples from the first equation. We thus end up with only one field

hµ⌫ satisfying the equation of motion,

r
[µh⌫]⇢ = 0 , (6.32)

and the gauge symmetry,

� hµ⌫ = r
(µ @⌫) "�

1

`2
gµ⌫ " . (6.33)

This gauge symmetry is precisely the gauge symmetry of partially massless spin-two

field [29–32, 32, 33].

• Instead of first deriving the equation and then gauge fixing to �µ = 0 , one can reverse

the procedure. We first gauge fix and eliminate �µ field in the action and obtain

SPM[�µ⌫ ] =

Z
d3x

p
|g| ✏µ⌫⇢ ��µr⌫ �⇢� , (6.34)
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‣ combines with (or eaten by) spin-one field

‣ describe partially-massless spin-two

‣ bi-fundamental

• All Weakly Interacting for Large k~N/2

Higgs-like
Mechanism!



Cosmological Scenario 

Figure 3. Potential of the colored gravity in dS (N = 15): k is the parameter of a curve in su(15)
that passes through the extremum points.

where X is a collection of tensor-valued constant (N ⇥N) Hermitian matrix. It would be

interesting to explore an initio definition of the three-dimensional quantum gravity starting

from this class of matrix models.

This work brings in many open problem worth of further investigation. As already

mentioned in Section 1, extensions to higher-spin (A)dS
3

gravity and supergravity is im-

minent. Further extensions to color-decoration of the known higher-spin gravity in three-

dimensional Lifshitz spacetime [44]and flat spacetime [45] are also straightforward. Exten-

sion to higher-dimensional spacetime is also highly interesting. A version of such situation

was already studied in the context of AdS/CFT correspondence [46]. Vasiliev equations

for color-decorated higher-spin theories needs to be better understood, along with higher-

dimensional counterpart of the stairstep potential we found in three dimensions. As the

color dynamics is described by Chern-Simons gauge theory, one might anticipate to formu-

late colored gravity in any dimensions in terms of a version of Chern-Simons formulation,

perhaps, along the lines of [47] and [48]. Quantum aspects of color-decorated gravity is an

avenue to be explored, in particular, consequences and implications of strong color inter-

actions among colored spin-two fields. Turning to the inflationary cosmology, it would be

interesting how the color-decoration modifies the infrared dynamics of interacting massless

spin-two fields at super-horizon scales. This brings one to investigate stochastic dynamics

of these fields, as would be described by color-decorated version of the Langevin dynamics

[49, 50].
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Highly Accelerating Universe
Weakly Coupled Spinning Matter

Low Acceleration
Strong Coupling 

→ Heavy Bound States
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Quantum Colored Gravity

The Hessian is not positive-definite for an arbitrary �X except the singlet vacuum k = 0 .

So, all k 6= 0 vacua are saddle points and the k = 0 vacuum is the minimum/maximum

in dS
3

/AdS
3

space. Another evidence that the k 6= 0 vacua are saddle points is that the

kinetic terms of the massless fields '� and  have a relative negative sign compared to the

singlet sector.

Figure 2. Potentials around each rainbow vacua with N = 3 . The (a, b) = (0, 0) vacuum is the mini-

mum/maximum in dS3/AdS3 space. The others, connected by SU(3) transformation, are all saddle points.

Considering the dS
3

branch, the potential takes a spiral stairwell shape (Fig.3) with

[N+1

2

] many steps, having split cosmological constants that range from ⇤ = 1/`2 at the

lowest step all the way up to ⇠ N2 ⇤ at the highest step. The spacing gets dense in lower

steps, while sparse in higher steps. If such features continue to hold in higher dimensions,

the colored gravity with large N might be very relevant for the early universe cosmology

in that the universe begins in an inflationary epoch with a large cosmological constant at

a very high stairstep. The colored matter are weakly coupled there, and hence they are

not confined. As the state of the universe decays towards lower stairsteps, the e↵ective

cosmological constant decreases sequentially and eventually exits the inflation. The colored

matter fields start to interact stronger and eventually form heavy color-neutral composites.

It is in this synopsis that the spin-two colored matter fields might play a novel role in the

current paradigm of the inflationary cosmology.

We also speculate on a novel approach to the three-dimensional quantum colored grav-

ity. At large N , the contribution of the O(N/2) multiple vacua in the path integral might

be captured by the su(N) random matrix model given by

Z
MM

=

Z
dX exp [i c V (X)] , (7.2)
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5 Classical Vacuua of Colored Gravity

Having constructed the action in metric-like formulation, we now search for classical vacua

that solves the field equations of motion

� �L
CM

�gµ⌫
= Gµ⌫ �

1

2
V (�) gµ⌫ ,

�L
CM

��µ⌫
=

@V (�)

@�µ⌫
, (5.1)

� N

2
p
� `

�L
CM

�Aµ
= ✏µ⌫⇢ F⌫⇢ , � N

2
p
� `

�L
CM

�Ãµ
= ✏µ⌫⇢ F̃⌫⇢ . (5.2)

For the identification of solutions, we assume that the colored massless spin-two fields are

covariantly constant with the trivial su(N) gauge connection,

A = 0 , Ã = 0 , r⇢�µ⌫ = 0 (5.3)

This immediately implies that

�µ⌫ = gµ⌫ X for X = constant 2 su(N). (5.4)

The equations in the second line (5.2) trivialize and the rest reduce to

Gµ⌫ �
1

2
V (X) gµ⌫ = 0 and

@V (X)

@X
= 0 , (5.5)

where V (X) = V (�µ⌫ = gµ⌫ X) is given by

V (X) = � 2�

N `2
Tr

�
I + 3X2 +X3

�
. (5.6)

From (5.5), the extremum of the potential defines the e↵ective cosmological constant of

the extremum:

⇤ =
1

2
V (X) . (5.7)

Although cubic, being a matrix-valued function, the potential V (X) may admit a large

number of nontrivial extrema that depends on the color algebra su(N) . If exists, each of

such extrema will define a distinct vacuum with a di↵erent cosmological constant (5.7). As

an illustration of this potential, consider the function f(X) = 1

N Tr
�
I + 3X2 +X3

�
for

the X belonging to su(3) . The 3 ⇥ 3 matrix X can be diagonalized by a SU(3) rotation

to

X = a

"
1 0 0

0 1 0

0 0 �2

#
+ b

"
�2 0 0

0 1 0

0 0 1

#
. (5.8)

We plot the function f(a, b) in Fig.1. It clearly exhibits four extremum points: (0, 0),

(2, 0), (0, 2) and (�2,�2) . The first point at the origin gives f = 1, whereas the other

three points all give f = 9 . In fact, these three points are connected by SU(3) rotation

and hence connected in the eight dimensional space of su(3).

We now explicitly identify the extrema of potential function (5.6) for arbitrary value

of N . The extremum points are defined by the equation:

�V (X) = � 6�

N `2
Tr

⇥
(2X +X2) �X

⇤
= 0 . (5.9)

– 12 –

• Rainbow vacua contribution in the path integral:

Random Matrix Model

Speculation 2



HS extension

✓ 3D CS formulation of HS Gravity

✓ Vasiliev Equations  [to appear]

• Color-decoration & Rainbow vacua extend to



HS extension

✓ 3D CS formulation of HS Gravity

✓ Vasiliev Equations  [to appear]

• Color-decoration & Rainbow vacua extend to

• Resulting spectrum after symmetry breaking

‣ all the spins glue together to form an exotic one
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