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SUMMARY

®* The 3D Prokushkin-Vasiliev equations
- Oscillator algebras .

- Full equations (bosonic) and maximally-symmetric vacua.

* Solving the equations

- Gauge function method.
- A 3D Lorentz-invariant solution. Comparison with 4D.

* Attempts at a spacetime and holographic interpretation

= Interpretation as a CDL instanton and comparison with gravity+scalar
- Holographic interpretation (at varying A) .

® Conclusions and Outlook



KINEMATICS

= Master-fields living on correspondence space, locally Xx Z2x Y'x 4.

W = dx“wu(y, z;1 .9, k, plx) | gauge fields of all spins + auxiliary
B = E(y, zy1.2,k, plz) matter fields and their derivatives
S = dz*Sa(y, 2910,k plz) . z-space connection, no extra local dof

» Commuting oscillators (y,, z,) = $p(2) doublets
o, ysle = 2i€as ,  |2ar28ls = —2i€as s [Wa,28]s =0

=  Star-product:

AN

Frd)an) = s [ Pudtv expliugs®) Fle -+ u,y+0) gz~ vy +0)

. . /\
= |nner kleinian operator «:



KINEMATICS

Two pairs of Clifford algebras generated by ¢, , and (k,p):
k* = :02:1 ) {p,k}:O, {kaya} — {k,za}:O, [paya] = [p,za]zo

z-oscillators = auxiliary, NC coordinates. Equations fix the evolution along these
twistor directions in such a way that it gives rise to consistent interactions to all
orders among physical fields. The latter are contained in the (z-independent) initial
conditions for the z-evolution,

W = /W|z=0 , C= E|z=0 .

y-oscillators + ¢, = realize the global symmetry algebra = symmetry algebra of the
most symmetric vacuum AdS; = 3D HS algebra, corresponding to a specific infinite-
dimensional extension of the AdS;-isometry algebra 58(2,2),

1

1
50(2,2) = sp(2)p(2),  Mag = L{vesUsh = Svatss Pop = Magth

Restrict to bosonic subalgebra. k = central element, can projectonk=%1.



3D HS ALGEBRAS

There is a one-parameter family of oscillators realizing $8(2,2) = deformed

oscillators L , T . :
[yo“ yﬁ]* - 226065(1 + Vk) ) Map = __{yom yﬁ}* (Wigner,
4 Vasiliev)
Correspondigly, the bosonic HS algebra splits into
Ulsp(2)] Vasili
s(2;v)+ @ bs(2;5v)1 5(2;0)1 — (Vasiliev,
(2 v)e @ bs(2v)s hs(2; ) Z[Cs + —3i2’;_”2] Feigin)
v = vacuum value of B, related to the mass of the scalar field and to the ‘t Hooft
coupling A of the conjectured boundary dual theory, (Gaberdiel-Gopakumar)
1Fv
bs(Ziv)e = bslN, A = —

The ¢,-dependence of the master-fields activates an additional sector of the
theory. It implements a twist operation ¢, - -¢, changing the sign of the

translation generator.
constant + Killing tensors

C(g;912) = C™(g;h1) + (’Phys (3012 physical scalar, (O —m?)¢ = 0
(G ra) = WG ) + e (G )

physical HS fields twisted one-forms



3D VASILIEV EQUATIONS

=  Full equations: AW +WW = 0
dga-i—[ﬁ?, :g\a]* — 0 (Vasiliev,
DU Prokushkin-Vasiliev)
[Sa, Bl = 0
Say Ssls = —2ieas(l+ B x kR)

= AdS; vacuum: (Vasiliev)

EO = BO = U,
1 , .

Soa = pza 1—|—1// ds(1 —s) (F_(l/ln|3|)e%(1+s)“—I—F+(V1n|s|)e%(1—8)“k)] =: Zy |
—1

e 1 apf af ~ o~

Wo = Wy = ey +wo, wo = 4_z'(w0 + e Vi){¥a, Ustx

FE(z) = ¢ (1F1[1/2,2,2) £ 1F1[1/2,2,—2]) , U= Y2,
[5a726]* = _Qieaﬁ(l + Vk"‘;) ) [gomgﬁ]* = Qieaﬁ(l + Vk) ) [gow 25]* =0

= We shall look for solutions that deviate from AdS bckgrd, separating out the latter as

A~

B:V-I—(/I; 6



EXACT SOLUTIONS: GAUGE FUNCTION METHOD

= X XxYx Z-space W = I-'xdl.
eqns: ~ ~ 1 =, = ~,
® = L %P %L, dd’ =0,
= Y x Z-space Se = L7'xS,*L, dS, =0,
eqns: S0, 9], = 0,
1S, S5l = —2ieas(1 + vkR + ' % kR)

®  Solve locally all equations with at least one spacetime component via some
gauge function, chosen as an AdS; coset element

¢ arctanhv 2 L
= 2 {Jas yﬁ}*zbl)

L(y;¢1|r) = exp, (—

8 Va2
" AdS;: B - o
0o - )
1 ' ‘
S(/)a = P2 ll—i-V/ ds(1 —s) (F_(l/ln|5|)€%(l+s)u+F+(V1n|8|)6%(1—s)uk>] _
1

= Solve the twistor-space equations, then “dress” all fields with x-dependence by
performing star-products with the gauge function. 7



GAUGE FIELDS SECTOR

= We want to interpret the coefficients of the master fields as space-time tensors 2>
it should be possible to extract Lorentz tensors (and a Lorentz connection) out of
the gauge fields generating function.

= But, in general, the expansion coefficients in W are not Lorentz tensors!

= The proper Lorentz generator, at the full level, is

B i ‘(g & MO 4
Vas = ~5vats — 7028) = +{8us Ssbe =5 MY+ 13

under which the physical-field generating functions transform as

5&@ — _[/6\07@]* ’
. 1 ap=s
oW = (W&l + 5dA Mg .~

* W decomposes into a proper Lorentz connection and Lorentz tensors as

1 o~ A
W = -w* (Maﬁ - i{Sa’ Sﬁ}*IZO) + ey + EHS% + Q5

2
(Vasiliev) 8



A LORENTZ-INVARIANT SOLUTION

= All the ingredients in the twistor-space v-vacuum solutions commute with ¢, =

we can generalize it as

‘é/ = V+/1’¢29
Se = PZa [1+(V+mﬁ2)/

1

ds(1 —s) (F_<(V + o) 1n|3|)e%(1+s)u +FH((v + M¢2)1n|8‘)6%(1_8)uk)
1

= However, the presence of ¢, implies that the twistor-space solution no longer
commutes with the gauge function, breaking the $8(2,2) isometry down to s8(2,1).

= Forv=0andin stereographic coordinates the zero-form master-field reads

® = & = puL MpoxL = pL %L lhy = u¢2\/1—x2exp(

U
— =

2

aﬁyayﬂwl)

[AdS; metric in stereographic coordinates: ds®> =

Adx>

]

* From @ at y = 0 we can read off the AdS;-massless scalar (m? =-3/4)

o)

w1 — a2

|



A LORENTZ-INVARIANT SOLUTION

= The gauge fields are to be retrieved from the splitting

W = —Zwoﬂyayﬁ - Zeoﬁyayﬂ%
(N 1 ~ = (N
= —Zw B (yayg + §{SQ,SB}*|Z:0> — Ze ﬁyayg% —I—EH5¢1 _|_QHS

= Since S, contains ¢, it gives rise to both a physical sector, where only the spin-2 field is
activated, and a twisted sector, to which all spins contribute:

1 -~
51 Sshiz=0 = Ayays + B ayvagys + Ca . ysy, i

1 2
I3 (1+s) afB
— ki (/ ds [F1a.'y, aﬁéf% + Fyra0p] €172 2 ¢ Yaypi

—1

1 1 . 5
i (1—s3) apf
+ / dS/ d§ [F?) yayﬂ + F4 CLafyyv aﬁéya] 61-1-8252@2 2 a yay5¢1 )l
—1 —1

= Solving for e and w = a conformally rescaled AdS, metric,

d82 — 492 d(gliU)2
(1 — g7a?)?
71— (1) 1 — gia? Cz?f 10
— a, Q= A7 5 =1
7 e"p/1 2(t)t nd-2" T T A



A LORENTZ-INVARIANT SOLUTION

The results in the physical sector are analogous to those obtained in 4D by Sezgin and
Sundell (algebraic structures are fixed by Lorentz invariance, only the embedding of
translations in the bckgrd isometry group is different, and causes some complication).

402 dz?
(1—32)?
(Sezgin-Sundell)
The solution is asymptotically AdS, with Q = 1 at the boundary, i.e., same AdS radius.
2 2

Q ~ 1+7T6Z h+OM2 ),  h o= 1- a2

402 d(gyx)?
(1 - giz?)?

o(z) = pW1—a?, ds* =

d(x) = v(l —a?), ds* =

A proper physical interpretation in the bulk as well as a holographic one await a HS
generalization of geometry (and, in strict relation, a proper understanding of
restrictions to specific functional classes, of asymptotic charges and small vs. large
gauge transformations).

Nevertheless, we now attempt a description in terms of standard spin-2 geometry,
using this exact solution (the simplest non-trivial one, in some respect) as a lab to try
and explore its possible duals and show some effects of the differences between
gravity+scalar theories and HSGRA (non-localities, etc.). !



INTERPRETATION AS A CDL INSTANTON

, ¢ = tanh=n", n%n, = 1, 2 >0,
" |n coordinates 2
T
¢ = tanEma, mimg, = —1, z? <0,
the solution reads ds®> = dp® + n(p)?sinh? p(—dr? + cosh? T7dp?)
¢ = ,usechg, >0,
ds*> = —dT? +n(T)*sin? T(dB? + sinh® Bdp?)
L
¢ = —, a*<0
cos 5

= This has the form of (the continuation to the minkowskian signature of) a Coleman-De
Luccia (CDL) instanton, manifestly O(2,1)-symmetric, describing a bubble of true
vacuum inside AdS, subject to a big crunch for T =1t (a genuine singularity from the
spin-2 point of view).

12



COMPARISON WITH 2-DERIVATIVE GRAVITY+SCALAR

= |tis interesting to compare the near-boundary (x> 2 1, p = =) behaviour of this
solution with that of similar ones in a 2-derivative gravity+scalar theory.

ds® = dp’ + G*(p)dsgs,
25 2,2 .
205y ., & K 2 P4
G*(p) 1 + 1 € + O (e, u*)

N[

2\ 3u?\ s _5p
b~ 2M(1—%>e —2u<1—i>e 2+(9<(e 4,u4>
* ¢ has the standard fall-off of an AdS,-massless scalar (m? = -3/4 = A(A-2))

¢ ~ fe PP 4 ae AP A_=1/2, AL =3/2
= However, starting from a canonically normalized scalar field with m? = -3/4 and
coupling it to gravity via a standard 2-derivative action, and imposing O(2,1)-
symmetry, one gets a class of solutions with

~ 625 EBZA— — 0 0\ max —
G2(p) ~ - 22(1—A_)62(1 AP 4O <(6p) (0,2 4A_))

- the subleading term in our solution grows too fast near the boundary!
13



COMPARISON WITH 2-DERIVATIVE GRAVITY+SCALAR

= |f one insists in engineering a 2-derivative action admitting a solution analogous to
ours, one finds that it is only possible to produce our asymptotic behaviour with a
NON-canonically normalized scalar field,

S = /d3x\/—_g (R +2— %K(qﬁ)aucb@% — V(¢))

2L (1 + “72)

K ~ O 0o, 3
T s 2 3
~ 14+ 2
14 556 (+4>¢+0(¢,u)
8(1- “T)
= We can field-redefine to a canonically normalized scalar, ¢ = =y X°+ O, u)

but now the latter has m? =-7/16, or A_ = 1/4, which
Indeed retrieves the near-boundary behaviour of the metric that we found.

= Hence, the two-derivative action should not be taken seriously as a “simplified
model” of PV theory: not surprising, since the PV system is known to describe higher
derivative interactions with arbitrarily high number of derivatives.
14



HOLOGRAPHIC INTERPRETATION

We shall now attempt to find a dual CFT configuration to our solution. To first order in
U, the bckgrd remains global AdS while the scalar profile solves the free KG equation.
We will use this to propose a dual picture for our solutions, under the assumption that
the standard AdS-CFT dictionary for free scalar fields remains valid.

We can explore the duality for the general theory governed by is[A], with0 <A <1,
conjectured to be dual to the 't Hooft limit of the unitary W}, minimal models.

First, note that we can simply compute the scalar profile also for general mass m? =
A>-1 &> A,=1%A. Indeed, ¢ =trace of an SL(2,R) element!, and we can compute it
via analytical continuation N 2 A (since his[A] itself can be thought of as an analytic
continuation of sI(N)) .

b = sinh(2)\ arctanhv/z2) _ psinh Ap
"3 sinh(2 arctanhv/z2) Asinh p
For A > 0 the near-boundary behaviouris ¢ ~ Be 2?4 qe 2+7 | B=—a= %



HOLOGRAPHIC INTERPRETATION

Imposing a boundary condition on the scalar where a = a(8) corresponds in the dual
theory to adding the deformation (6 €2 <0O_>)

AS = —N/deW(C’)_), with [O_] = A_, 88—‘2/ = a(f)
Choosing W to be marginal,
_ A = _ ()

As B = const, it seems the CFT description is bound to be smooth even though the
solution has a big crunch! But this is a coordinate artifact. In AdS global coordinates,
ds? = — cosh? r dt? + dr? + sinh? r d?
the VEV is NOT smooth and constant, but rather

_ H
b= A(cost)A-
At t = t/2 the bubble reaches the boundary and the VEV blows up, signalling that the
deformation has rendered the field theory singular.
16



HOLOGRAPHIC INTERPRETATION

From the POV of the dual theory, we can understand this behaviour from the
effective action for o =< O_> in the deformed CFT.

2 K
if[a]:—/aﬂx(m—_ E+C(9M08 G—i—...)

N 2 202

Redefining o = exp (c/2y ) one gets the classical Liouville action,

A_
%F[a] = —/dQLU (8u¢8“¢ + fTe’W) : v = 2A—\/_E

For f< 0, the effective theory is unstable and admits solutions of the form
A

(=)

which coincides with that of the bulk profile.

) X , i dz? + dy*d ) )
Note that in Poincaré coordinates ds? = S 2y Y the solution looks like
zZ

A

omems - (DL L)

a d =2 2 scaling limit of a Fubini instanton .




HOLOGRAPHIC INTERPRETATION

Interesting boundary interpretation for A = 0, where the conjectured undeformed dual
CFT is (the singlet sector of) a theory with N free fermions W3, a=1,..., N.

For A =0, m?=-1, and the scaling dimensions become equal, A+ = A- = 1. For this
value of the mass, the profile of a free scalar has a logarithmic term in the near-
boundary expansion,
yexp ¢ =aln(mz)z + Bz
where z = exp(-r) and we have introduced a scale m to define the logarithm. On the
dual side, this corresponds to the fact that the double-trace deformation with the
operator dual to ¢ is only classically marginal, while quantum mechanically it has a
running coupling. This limit captures effects of a running coupling in a large-N
interacting fermion model.

The operator dual to ¢ is the single-trace (¢ = %

and the deformed theory is a Gross-Neveu model with wrong-sign potential, free in

the infrared, , [- Tf - )
= @ H _—— a
S /dw[\lffy OmVa 2N(\IJ U,)
18



Z-SPACE MONODROMIES AND S-MODULI

= The structure of the vacuum ® = 0 may be richer than it seems at first sight.
Indeed, the deformed oscillator equation

(SO GO0 = 4

has the structure of X? = 1. If X is valued in a purely commutative algebra - X = =£1.
However, if it is vaued in a non-commutative algebra, there are more interesting

possibilities: X2=1 - X=1-2P, P2=Pp

" Projectors in Z-space connection = flat but non-trivial! More complicated vacua?

=0, S =z, <1—229npn(y,2)> ., P,xP, = 6,mP,, 0, = {01}

n=0

(C.1.-Sezgin-Sundell "07)

» Can also dress up non-vacuum solutions (like windings in String Theory...). Both
bhs and the scalar-instanton can be decorated with these discrete S-moduli.

» Different choices for the Fock-space where the projectors act lead to different

global symmetries. 19



CONCLUSIONS & OUTLOOK

Constructed a Lorentz-invariant exact solution to the 3D HS gravity coupled to matter.

In a specific gauge, it only activates a scalar profile over a rescaled AdS metric.

It admits a “dressing” in terms of Lorentz-invariant projectors, reminiscent of
monodromies of the z-space connection. They furnish new vacua, possibly inequivalent
to AdS.

Most properties are identical to the 4D analogue found by Sezgin and Sundell.

Attempted a geometrical description of the solution in terms of spin-2 geometry.
A proper analysis should be performed in terms of HS observables.

In terms of the spin-2 geometry, the solutions resemble a CDL instanton with a big crunch
singularity. At the same time, there are notable differences from similar solutions
of standard gravity + scalar theories.

Attempted a holographic interpretation for generic mass of the scalar: the corresponding

Dual configuration in the CFT is a D = 2 scaling limit of a Fubini instanton.

20



