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= known to be an intrinsic feature of their interactions

free local Lagrangians, however, are usually required to

-

be generated by 2nd order kinetic tensors

still, free equations naturally appear in higher-derivative form,

-

once they are formulated a la Bargmann-Wigner
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we investigated further the Bargmann-Wigner program
extending it to the case of multi-particle representations

——p= dlternative to more conventional single-particle equations

—= gkin to massless hsp as emerging from tensionless strings
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wave equations for particles with zero mass
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N ~ plv]groy

S.t.
Ohyy =0, 8%ha, =0, h% =0
huy ~ hyy + 0N, + 0,0\,

OA, =0, 0%A,=0

iso(D — 2) non compact

gauge equivalence: finite spin

same tensor as
for massive irreps

independé@

Bargmann-Wigner 1948

Rt v~ K p
e V|0 |qrL(p)
S.t.
O R ), po = 0
""" R v, po = 0

no gauge equivalence
to be discussed
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Wave equau’ons for m=0, =2
M\

Connecting the two descriptions:

8972“,,”0 =0 —_— Ruy,pg (h) = auaph,/g -+ ...

Poincaré Lemma

-

il
-

% a[)x R,uu], po (h)

¥ 0P Ruvpe(h) =0 corresponds to the vanishing of the linearised
Ricci tensor, that can be written

Dh/u/ — a(,u AI/)(h)

so as to stress that it reduces to P2 = ( upon
partial gauge fixing
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P =Lui..ous ~~ RER,ull/l ..... s
S.t. S.t.
_ oA — I
Op=0, 0-0=0, ¢ =0 IR — 0

Ppi..pms ~ Pui...ps ‘|‘a(u1Au2---us)
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Wave equau’ons for SJoin S Bekaert Boulanger

200.g, 2003
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Connecting the two descriptions:

dR =0 —— R,u,lz/l ..... UsVs — a,ul ---a,usgpl/l...l/s + ...

Generalised Poincaré Lemma

-

* dR(p) =0

% The higher-derivative equation R’ = 0 can be proven to be equivalent to
the wave equation

Op = 0A(p)

where the r.h.s. can be gauge fixed to zero. (! Note: this is not the Fronsdal equation)
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we focus on hsp curvatures:

R uv. oo (R)
S

R,ulyl,..., MslVs (SO)

=>» For spin 2: Ricci = 0

standard hsp theories
are " Ricci-like”

=» for spin s one can prove

naﬁRavl,ﬁm,-.-,usvs () =0 —= ¥ = 8‘/\(90)

=>» [n Vasiliev unfolded, frame-like formulation one recovers it in the form

“Curvature = Weyl”
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Two cases are slightly different:

Spin zero

— the potential is its own curvature: ¢ ~ R

_, one directly imposes OR = 0

Spin one (and p-forms)

Ay~ Ry ~
S.t. S.t.
IRy, = 0

O0“Ro, = 0



Our goa[z

we wish to extend the Bargmann-Wigner program

to encompass the Maxwell-like equations
0-R(p) =0

for all spins, in any D, i.e. including tensors with mixed symmetry



Plan
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Based on

J.Phys.A: Math.Theor. 48 (2015) (with X. Bekaert and N. Boulanger)

Class.Quant.Grav. 29 (2012)

see also

Nucl.Phys. B881 (2014) 248-268 (with S. Lyakhovic and A. Sharapov)
JHEP 1303 (2013) 168 (with A. Campoleoni)

Prog.Theor.Phys.Suppl. 188 (2011)
Phys.Lett. B690 (2010)

J.Phys.Conf. Ser. 222 (2010)
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The only non-vanishing components of R v, po are

R ti+5 ~ hij

—

i.e. they define a symmetric tensorGL(D-Z ) )

In terms of patrticles (irreps of O(D-2)) this means

IAR ), po = 0 one particle with m = (), s=2
—
0" R pe = 0 one particle with m = 0, s=0

Maxwell-like eqs propagate reducible multiplets
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Bargmann-Wigner counterpart, by adding a row on its top

General case: consider an arbitrary tableau in GL(D-2) and build its

Yerip-2) = — RaLp) =

—>  Require 'R g, (p) to satisfy the closure and co-closure conditions

dR = 0
dTR = 0

(w.r.t all rectangular blocks)

— > pl_( —= p,=(ps. 0, ..

=> The non-vanishing components, RJFj%,,,jlll,,,,,H;‘...j;?i,...,+jf...j;s :

correspond to a multiplet of massless particles:
branching of the GL(D-2)-irrep in terms of its O(D-2)-components.



Curvatures & wave cyoemwrsfor gauge}oowﬂu’afs

M\



ﬂ-[igﬁ-oferivaﬁve eclucm’ons ﬁom curvatures
'Y,

We make contact with gauge potentials solving for the closure
conditions via the Generalised Poincaré Lemma:



ﬂ-[igﬁ-oferivaﬁve eclucm’ons ﬁom curvatures
'Y,

We make contact with gauge potentials solving for the closure
conditions via the Generalised Poincaré Lemma:

dR = 0 — R(p) =d'd? - d°¢

(w.r.t all rectangular blocks)



ﬂ-[igﬁ-oﬁerimtive ecluau’ons ﬁom curvatures
[~

We make contact with gauge potentials solving for the closure
conditions via the Generalised Poincarée Lemma:

dR = 0 — R(p) =d'd? - d°¢

(w.r.t all rectangular blocks)

where R (i) corresponds to the irrep of GL(D) obtained from a given
tableau Y by adding an extra row on top of it:




ﬂ-[igﬁ-oﬁerivative ecluau’ons ﬁom curvatures
[~

We go through the Bargmann-Wigner analysis again,
but now for high-derivative functions of gauge potentials

R(p) =dtd?---d®
computing the divergence of R
diR(p) =d*---d*(0—d'd;))p ~ O(d)M =0

where

is a sort of second-order
Maxwell-like wave operator
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Problem: determine the kernel of the operator O (d)
two steps:

o d? - d* (0 - d'd;)p = 0

Getting an equation for M —=
via the Generalised Poincaré Lemma

Show that the resulting equation
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T1oR(p) =d? - d*F ~ O(d)F =0

where F o= Dgo—didz‘sﬁ‘l‘ _didjTijSO

Solving for the kernel of O (d)

Show that the resulting equation
can be gauge fixedto P? = 0 :
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still higher-derivative egs!

F = %didjdkfﬂijk (QO)

Our analysis shows that the two ~ compensator’ structures
D i; () and Hijk (@)

can be consistently gauge fixed to zero, leading to

M =0 F=0
d*did; Ay =0 Tj Ay =0

| D.F., A. Campoleoni 2013 | Fronsdal-Labastida, '78, ‘89
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To summarise:

_Via the Poincare’ lemma

/ BW trace conditions on \
- curvature precursors”
\.describe one-particle dot/

_upon partial gauge fixing
one recovers the usual
Fronsdal-Labastida eqs

/" BW transversality , ,
Y _Via the Poincare’ lemma

—) _upon partial gauge fixing
they reduce to

M :=0p —d'd;o =0

conditions on the same
tensors describe
multi-particle dof

N <
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Let us compare the corresponding Lagrangian formulations

Maxwell-like, N families.:

(multi-particle spectrum)

Fronsdal-Labastida, N families:

1 ( N (1)]0
_ A E _ 1]
£_2¢< —I_ . .7711000

1

L=—-pMgyp

2

M = (I:I — 6”’8@)

' 7% Yiony T T;

1J1 *°°

Tiis

¥

T(ij Tkl)@ = 0

pjp




Reducible mu[ujoﬁets and tensionless s’m’ngs

M\



Massless ﬁigﬁer SJOiTLS from tensionless sm’ngs
'Y,

Open bosonic string oscillators

o, af] = kégyron?”



Massless ﬁigﬁer SJOiTLS from tensionless sm’ngs
NN\

Open bosonic string oscillators

~ 1
+00 Lo = Ly Ly =
1 S
9 Oy Qul 5 — | - >
|=—o0 1'30 _ ?LO a' — o0 g =

“tensionless ” limit



Massless ﬁigﬁer SJOiTLS from tensionless sm’ngs
NN\

Open bosonic string oscillators

~ 1
+00 Lo = Ly Ly =
1 S
9 Oy Qul 5 — | - >
|=—o0 1'30 _ ?LO a' — o0 g =

“tensionless ” limit

Uk, i) = Kdk11,0l0



Massless ﬁigﬁer SJOiTLS from tensionless sm’ngs
NN\

Open bosonic string oscillators

~ 1
+00 Lgso = Ly, L = p,ua'uk:
1 S
e Ly = ?Lo o’ — 00 lo = pup”

“tensionless ” limit

Uk, i) = Kdk11,0l0

Algebra with no central charge === identically nilpotent BRST charge Q

same charge from tensionless limit of open string BRST charge, after rescaling of ghosts
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L= Wl >

decomposes in
diagonal blocks

for “"diagonal blocks’ associated to symmetric, rank-s tensors ¥ p1 - ps,
(states generated by powers of a” ;) the corresponding Lagrangian 1s
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Massless ﬁigﬁer spins from tensionless sm’ngs

M\

o %W‘ Q) N decomposes in

, diagonal blocks
o — OO

for "“diagonal blocks™ associated to symmetric, rank-s tensors # 1 ---ps,

(states generated by powers of a” ;) the corresponding Lagrangian 1s

1 1
Loiriplet = §¢Dgp— 5302 — (;)DDD + s0-pC + 2<;>D8-C

equations of motion gauge transformations

Op = 0C p — SpIL S o0p = 0A
C =0-¢—0D C' — spin s — 1 oC = 0OA
0D = 0-C D — spin s — 2

oD =0- A
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Massless ﬁigﬁer 5}01’115 from tensionless sm’ngs
'Y,

=> the field C is purely auxiliary (no kinetic term) and can be directly

integrated away from the Lagrangian

Bengtsson, Ouvry-Stern 86 Henneaux-Teitelboim ’88
D.F.-Sagnotti ’02, Sagnotti-Tsulaia '03
Fotopoulos-Tsulaia ’08 . . .

=> the field D 1s pure gauge, and as such contains no physical polarisations

—

the eom for the physical field from the tensionless string
My = 20D

are just the Maxwell-like equations with a * compensator™

[also valid for mixed-symmetry fields]
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Conclusions
'Y,

" "Ricci = 0” provides the

R“ o V1...Vg — 0 :
RS Msy LTS backbone of gauge theories...

when the focus is on single-particle interactions

Alternative option:
reducible, multi-particle theories

" Maxwell = 0” seems to provide
the proper model to this end
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Wﬁy?

Exploit an alternative basis of field variables

_ for instance for the spin-2 case the self-interactions of a single field would
encompass all the vertices of a scalar-tensor theory

(Reminiscent of Galileon interactions)

seemingly, usual (say) self-interacting spin-s vertices would subsume a

number of lower-spin couplings, the majority of which with too many
derivatives (wrt Metsaev s classification)

-

=> SFTis full of such couplings.

what are their actual role and meaning!?

In progress...
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=> the field C' 1s purely auxiliary

=> thefield D is pure gauge ow does the Lagrangiaﬁ
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Integrating over the fields C and D we find

1 1

S 1 _
Lepr(p) = §¢(D — 00-)p + §<2>8-8-¢(D + 588-) L0-0-¢
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The inverse of the operator O = 0O + 5 00- on rank-k tensors is

and the resulting Lagrangian is
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~
The inverse of the operator O = 0O + %88- on rank-k tensors is
1 1 - m m! 0" o m
Ow) = E{l i ;(—1) 2m [T, (1 + £) mmﬁ' ;
and the resulting Lagrangian is
Lerr(p) = 2((;281) R s i, 31_1 R (&) parphss vaeevs

Lagrangians ~, squares of curvatures



