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still, free equations naturally appear in  higher-derivative form,  
once they are formulated à la Bargmann-Wigner
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free local Lagrangians, however, are usually required to 

be generated by 2nd order kinetic tensors
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alternative to more conventional single-particle equations

akin to massless hsp as emerging from tensionless strings
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@ [� Rµ⌫], ⇢� (h) ⌘ 0

Ÿ

Rµ⌫, ⇢� (h) = @µ @⇢ h ⌫� + . . .

⌘µ⇢ Rµ⌫,⇢� (h) = 0 corresponds to the vanishing of the linearised  
Ricci tensor, that can be written

2hµ⌫ = @ (µ ⇤ ⌫)(h)

so as to stress that it reduces to               upon 
partial gauge fixing

P 2 = 0
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Connecting the two descriptions:
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U

U The higher-derivative equation              can be proven to be equivalent to 
the wave equation

Ÿ

dR = 0

dR (') ⌘ 0

Rµ1⌫1,...,µs⌫s = @µ1 . . . @µs' ⌫1...⌫s + . . .

Wave equations for spin s 

R 0 = 0

2' = @ ⇤ (')

where the r.h.s. can be gauge fixed to zero. (! Note: this is not the Fronsdal equation)

Bekaert Boulanger  
2002, 2003

Generalised Poincaré Lemma
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Our goal:

we wish to extend the Bargmann-Wigner program 

to encompass the Maxwell-like equations

for all spins, in any D, i.e. including tensors with mixed symmetry

@ · R (') = 0
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Plan

Maxwell-like equations à la Bargmann-Wigner

Curvatures & wave operators for gauge potentials

Reducible multiplets and tensionless strings

§

§
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General case: consider an arbitrary tableau in GL(D-2) and build its 
Bargmann-Wigner counterpart, by adding a row on its topŸ

Ÿ

Arbitrary spin in arbitrary D⇠

Require                to satisfy the closure and co-closure conditionsRGL(D)

P 2 = 0 pµ = (p+, 0, . . . , 0)

Ÿ R+ j11 ...j
1
l1
, ...,+ ji1...j

i
li
, ...,+ js1 ...j

s
ls
,The non-vanishing components,  

correspond to  a multiplet of massless particles: 
branching of the GL(D-2)-irrep in terms of its O(D-2)-components.

dR = 0

d † R = 0
(w.r.t all rectangular blocks) 
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where            corresponds to the irrep of GL(D) obtained from a given 
tableau Y  by adding an extra row on top of it:
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@ @ @ @



We go through the Bargmann-Wigner analysis again,  
but now for high-derivative functions of gauge potentials
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M = d i d j D ij (')
still higher-derivative eqs!

Our analysis shows that the two ``compensator’’ structures

can be consistently gauge fixed to zero, leading to
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D ij (') H ijk (')and

D.F., A. Campoleoni 2013 Fronsdal-Labastida ’78, ‘89
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BW trace conditions on 
``curvature precursors’’
describe one-particle dof

BW transversality 
conditions on the same 

tensors describe 
multi-particle dof

Ÿ
_Via the Poincare’ lemma 

_upon partial gauge fixing
one recovers the usual
Fronsdal-Labastida eqs

To summarise:

Ÿ
_Via the Poincare’ lemma 

_upon partial gauge fixing
they reduce to

M := 2' � d i d i ' = 0
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Maxwell-like, N families:
L =

1

2
'M '

L =
1

2
'

(
F +

NX

p=1

(�1)p

p! (p+ 1)!
⌘i1j1 . . . ⌘i pj p Y{2p} Ti1j1 . . . Tipjp F

)
,

M = (2 � @ i @ i)

F =
�
M + @ i@ j Tij

�
'

(multi-particle spectrum)

T( ij ⇤ k ) = 0

T( ij Tkl ) ' = 0{
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the field   is purely auxiliary (no kinetic term) and can be directly 
integrated away from the Lagrangian 

the eom for the physical field from the tensionless string 

C

M ' = 2@ 2 D

Massless higher spins from tensionless strings

Ÿ

⇠

the field       is pure gauge, and as such contains no physical polarisationsŸ D

are just the Maxwell-like equations with a ``compensator’’

Bengtsson, Ouvry-Stern ’86 Henneaux-Teitelboim ’88 
D.F.-Sagnotti ’02,  Sagnotti-Tsulaia ’03  

Fotopoulos-Tsulaia ’08 . . .

[also valid for mixed-symmetry fields]



⇠
Conclusions



R↵
↵µ3...µs, ⌫1...⌫s = 0 ``Ricci = 0’’ provides the 

backbone of gauge theories…

⇠
Conclusions



R↵
↵µ3...µs, ⌫1...⌫s = 0 ``Ricci = 0’’ provides the 

backbone of gauge theories…

⇠
Conclusions

when the focus is on single-particle interactions



R↵
↵µ3...µs, ⌫1...⌫s = 0 ``Ricci = 0’’ provides the 

backbone of gauge theories…

⇠
Conclusions

when the focus is on single-particle interactions

Alternative option: 
reducible, multi-particle theories 



R↵
↵µ3...µs, ⌫1...⌫s = 0 ``Ricci = 0’’ provides the 

backbone of gauge theories…

⇠
Conclusions

when the focus is on single-particle interactions

@ ↵R↵µ2...µs, ⌫1...⌫s = 0``Maxwell = 0’’ seems to provide 
the proper model to this end

Alternative option: 
reducible, multi-particle theories 
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⇠
Why?

Ÿ

Ÿ

for instance for the spin-2 case the self-interactions of a single field would 
encompass all the vertices of a scalar-tensor theory

SFT is full of such couplings.

Exploit an alternative basis of field variables

Ÿ
seemingly, usual (say) self-interacting spin-s vertices would subsume a 
number of lower-spin couplings, the majority of which with too many 
derivatives (wrt Metsaev’s classification)

what are their actual role and meaning?

(Reminiscent of Galileon interactions)

in progress…
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Integrating over the fields C and D we find
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and the resulting Lagrangian is


