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5-point classical Virasoro conformal block

The five-point correlation function of Va (z), i =1,...,5 can be decomposed into conformal
blocks

F(z1, ..., 25| A1, ..., As; Ay, Ay €)

which are conveniently depicted as
Fishbone graph

22, Ag 23, A3 LA

0,4, 0, A

There exist many evidences that in the semiclassical limit ¢ — co the conformal blocks must
exponentiate as

. c o~
Flan b A)) = e [~ cf(z.6.8)]

A - . . . o .
where e = =X and & = =X are classical dimensions and f(z|e, €) is the classical conformal block.
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Auxiliary Fuchsian equation

Auxiliary 6-point correlation function (Vi2(z)Vi(z1)--- Vs(25)), where Vi2(2) is the second level
degenerate operator. The decoupling condition is

e 3 (2 + s ) Vi ida - ot =0

In the classical limit ¢ — oo the 6-point auxiliary correlation function behaves as
c -
(Viz(2)Va() -+ Va(zs)) | = (@) exp(—< (21, 6,8)
c—00 6
where f(z;) is the classical block and v(z) is governed by Fuchsian equation

d?y(2)
dz?

5

+TEWE =0,  T@)=> (—m+——).

H\Mz—z)P? z-z

Here T(z) is the classical stress-energy tensor and ¢; are the accessory parameters

of
c;(z):%, i=1,..,5.

The asymptotic behaviour T(z) ~ z=% at infinity implies the constraints

5 5
d =0, > (cizi+e)=0, > (cizf +2€¢z)=0.
i i=1 i=1

Only two accessory parameters are independent, ¢ and c3.
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Heavy_ | Ight a pprOXI matlon Fitzpatrick, Kaplan, Walters’ 2014

Let €4 = €5 = €5, be the dimension of two heavy fields, while fields with dimensions €1, €2, €3 be
light. It means that the dimension of heavy operators is fixed in the semiclassical limit while those
of light operators tend to zero. The Fuchsian equation can then be solved perturbatively:

P(2) = 9O(2) + pU(2) + v(2) + ...,

T(z) = T(O)(z) + T(l)(z) + T(Z)(z) + ...,

ci(z) =22 + M)+ Pz) + ...,
where expansion parameters are light conformal dimensions. In the case of the heavy-light
conformal blocks it is sufficient to consider just the first order corrections

10 (5)) 0O 0 ()) (1))
(o +T9@)v0=) =0, (25 + TO@)vW(z) = ~TWYO(z)
dz?
where the stress-energy tensor components are directly read off from the main expression.
The two branches in the zeroth order are given by
1+«

2 5 :\/1—46/7.

Using the method of variation of parameters we find the first order corrections

VP2 =1-2)%, 4z =

W@ = @) [ dzuO@ T (@) - ~u0) [z TE ()
W02 = 200 [ a0 T @) - 260 [d v @ T .

Corrections 1/15?(2) has branch points identified with punctures at z and z3.
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Contour integration and monodromy

To find the monodromy we evaluate the following integrals

1 1
=~ § a0, 1= @),
Tk

Yk

1= 2§ @ 00 W =2 @ TOE )
Yk

Oé-yk «

over two contours 2 and -3 enclosing points {0, z2} and {0, z2, z3}. For instance, we find

o
1® = %’ [ae1 + (1l - 22) — e + c3(1 — 23) — 3 — (1 — 22)%[e2(1 — 22) — e2(1 + Q)]
(1) &

where ¢; = ¢, and 3 = ¢3'. Two monodromy matrices M = {Mj;, i,j = %} associated with
contours v, and 43 are

(@)~ ) () memorms,

The first order Mg defines the monodromy of w(o)(z). In the linear order the monodromy
matrices are given by

1412 @ 1@
M(y2) = ( I(z)++ 1 _+I(2) ) M(ys) = J1e) +1 :
—+ ++ —+
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On the other hand, the monodromy matrices over contours - and -3 are defined by the
conformal dimensions of the fields in the intermediate channels

~ e+7ri/\1 0 ~ eJr7ri/\2 0
M(72) = - ( 0 efm'/\1> ; M(ys) = — ( 0 efﬂ'f/\g) ;

where Ay = /1 — 4€; and Ay, = /1 — 4€, parametrize intermediate dimensions.

Monodromic equations

1212 4 (2@ _onig 148 —2rig, .

Accessory parameters are uniquely defined by 5 algebraic equations which are 3 linear equations
and 2 irrational equations.

Superlight expansion

ci = CI-(O) ar 63C(1)

i

@
1

teddd .
")

is the 4-point accessory parameter while ¢;"’ are corrections,

-I-e%c

where the zeroth-order cl.(o)
k=1,2,....
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Solving the monodromic equations: €; = ¢ and €, =

Introducing notation
x=1-2)a, y=01-=) and a=(1-2), b=(1-z)"

and

oo o0
n
x=>€xn, y=> €y,
n=0 n=1

we find all corrections up to the third order

_ (a+1) . +a _a a4 b?
Xo—61+61a(371)+€104371, X1_2a7b2’

(a—1)a+ bﬂ

e [b\/g(a—2ab+b2)(a—2b+ b?)
Xy = —
°T 2y (a— b2)3 4/a(a — b2)2
o« [ab(b —1)(a —2ab+ b?)(a — 2b+ b?)(a — 3ab + 3b? — b3)}
Y (a— b2)5 ’
and
a+ b? a [ by/a(—a+ 2ab — b?)(a —2b+ b?)
n=l-a—s, Yo = — 3 )
a—b €1 (a—b?)
a [b(a—2ab+ b?)(a—2b+ b?)(a® + a®> — 8a®b + 6ab? + 6a°b> — 8ab® + b* + ab®)
¥3= 75 (a— b2)5 ’

2¢7
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Classical conformal block

The power series expansion of the 5-point classical conformal block f(z) is given by
f(z) = FO(2) + eafD(2) + D (2) + SO (z) + ...

Using explicit expressions for the accessory parameters and integrating ¢; = 9f /9z; we find that
the expansion coefficients are given by

-1

.\/5—1]’ f(l):—|n[—'a_b2

1
FO = —eyin[i 2 Dinatel “Inb
e1n[l2\/5]+ana+eln[l\/5+1 12\/5b}+an ,
F2) — 1 (a+ b?)(a+ a® — 4ab + b2 + ab?)
A 4./a(a — b2)2 ’
(@) _ L (b—1)b(a—b)(a+b*)(a+a® —4ab+ b+ ab?)
2 2(a — b2) )

where a = (1 — 2)® and b = (1 — z3)®. The leading contribution (9 is the 4-point classical
heavy-light conformal block.
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The AdS/CFT correspondence

The heavy operators with equal conformal dimensions €, = €,—1 = €} produce an asymptotically

AdS3 geometry identified either with an angular deficit or BTZ black hole geometry
parameterized by

a:\/1—46h

The metric reads o
2 1
ds? = -2 ( — dt? +sin® pd¢? + —dp2>
cos? p a?

Here

@ o? < 0 for an angular deficit
@ a? > 0 for the BTZ black hole

wa, €2

The light fields are realized via particular graph of worldlines of n — 3 classical point probes

propagating in the background geometry formed by the two boundary heavy fields. Points w; are
boundary attachments of the light operators.

The identification

n—2 n—3
Sflulk ~ f5(2|€,€)+... s SCbIUIk ZZG,' L;+Z€i L,‘ s
i=1 i=1

and L; and L; are lengths of different geodesic segments on a fixed time slice.
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Geodesic approach

The worldline action of a single massive particle with m ~ ¢ is

"

A - . 2
S= e// dX \/gttt2 + 8069 + 8ooh? ds® =
A

«

1
( — dt? + sin2 pdg? + —dpz)
cos? p a?

Coordinates t and ¢ are cyclic — a constant time disk (p,¢).
Changing variables as 17 = cot? p and introducing notation s = lp%l
we find the on-shell action

o S=clIn v

0 VITn+/1-7

w
’
n

Parameter s is an integration constant that defines a particular form
of a geodesic segment.

@ The radial line has s = 0. For p; = arccossin(aw/2): L,q = —Intan %*
® The arc has s = cot 4. The length Lurc = In [ sin 4] + In2A
@ The 4-pt block: f ~ €jLaq + 2€1Larc
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Five-line configuration

The multi-particle action reads

S(W) =e1l1 +elr +e3l3 + EiLi +€§L§

Vertex equilibrium equations

@ Ist vertex (€15}, + e1p), + €2p3) ) =0
X=x1

@ 2nd vertex (&5, + &p2 + e3p3) ’ =0
X=Xxp

Angular equations

A1 + Ado = wp —w A¢1+A¢3+A<131:W3—W1J
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Geodesic equation system

Three linear equations

$ =0, €3s3 — €151 =0, €151 — €25 — €151 =0,

and

Two irrational equations

Vertex eqs

63\/1 — s +€1\/1 —Em=2&, 61\/1 —s?m +€2\/1 — s = 51\/1 — 8

Angular eqs
o I = i VTR (/1= Fm - i VTFT)

(1 —is1)(1 — is2)

ows _ (‘/1 — 53%772 — is3/1 +n2)(1/1 — §f772 —i514/1 +n2)(‘/1 — 512771 —is1/1 +111)

(1 —is3)(\/1 = 5m — is1y/TFm) (L — ist)

e

e

@ 5-pt case: a complicated higher order algebraic equation
@ 4-pt case: an exact solution (Hijano, Kraus, Snively, 2015)
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Monodromy vs geodesic approach

Computing the geodesic length vs integrating canonical momenta in the attachment points. J

There are three boundary attachments w; = 0 and ws, w3 so that

0S(wa, wa 0S5 (wa, ws
CY€252(W27 W3) = ¥ 5 CV5353(W2’ W3) = Q
8W2 8W3
The accessory parameters are defined in much the same way as
Of (z, z3 Of (22,23
a(z,z) = Of(z2,23) ; c3(z2,z3) = ez, z3)
622 823

The two systems above define potential vector fields in two dimensions which can be related to
each other.
@ Coordinates
Wm =iln(1l—zpy), m=1,2,3

@ Potentials
)C(ZQ7 23) = S(Wg7 W3) + icown + iezws

It follows that the accessory and angular momenta parameters are related as
1+ iasm(w)
€Em ——/————————

s m=1,2,3
1—2zn

Cm =

The above map can be considered as an AdS/CFT correspondence.

The differential equations are easy to integrate while parameters satisfy complicated equations. )
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A physical root

@ Within the monodromy approach there are five variables ci, ..., c5 (accessory parameters)
subjected to three linear and two irrational equations

Ma(c) =0, a=1,..,5

@ Within the geodesic approach there are seven variables s, s, 53, 51, $
(external/intermediate angular momenta) and 71, 72> (radial vertex positions) subjected to
three linear and four irrational equations

GI(51§777):0 I:1))7

In principle, one might expect that eliminating the vertex position variables the residual two
geodesic equations match exactly with the monodromic equations. Instead, a weaker version of
the equivalence turns out to be true — the systems are required to have at least one common root.
It is instructive to have both monodormic and geodesic equations expressed in the same notation.

The 4-point case

1) — 2
Monodromic equation: (s + iw) =0,
1—a
1) —
Geodesic equation: (s+i)(s+ i(a—i_l)i\/g%) =0,
—a

where a = (1 — z2)®. The above equations do not coincide but have a common root.
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The 5-point case

By analogy with the monodromic equations the geodesic ones have no explicit solution.
@ All linear geodesic equations are explicitly mapped to linear monodromic equations.
@ A combination of geodesic irrational equations have a root which is exactly mapped to one
irrational monodoromic equation.
@ The rest of geodesic irrational equations allows just for a perturbative analysis.
The expansion of angular momenta up to the third order is given by

S,':S,.(O)+VS()+I/ 5(2)+V35i(3)+”'7 V:63/€1, I:2,3
The expansion coefficients are found to be (here 5 = & /€1 and 623 = aws 3/2)
0 1 1 b4
sg ) :—cot92—|—;42sina2 , sg ) — 5cot(203—92),
@ _ [9 cos(203) + 7 cos(20> — 203) — cos(462 — 663) + cos(26> — 603) — 4 cos(20, — 463) — 12]
2 32sin3(62 — 203)
®3) sm 03[sin(02 — 3603) — 3sin(02 — 03)][3 + cos(202 — 403) — 2 cos(20, — 203) — 2 cos(263)]
s, = ,
2 8sin®(H2 — 263)
s = _ cot(205 — 62) (1)7, 0, — 20 0 + 4sin%(6, — 6 )
3 3 h) , 2csc ( h 3)[S|n b + 4sin“ (62 3)S|n 5],

1
s§2) =16 csc® (02 — 2603))[6 cos 0y + cos(Ha — 403) 4 cos(302 — 463) — 8 cos(H2 — 203)] x

X[3 4 cos(20, — 403) — 2 cos(202 — 203) — 2 cos(263)] .
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Multi-particle action

The power series expansion of the bulk multi-particle action S(w) is given by
S(w) = SOw) + 35N (w) + 5P (w) + 85 (w) + ... .

Using explicit expressions for the angular momenta and integrating ae;s; = 9S/0w; we find the
expansion coefficients are given by

0
So(8) = —2¢1 Insin 6, + & Intan 52 . S51(0) = —Insin(203 — 62) ,

_costh + 2csc?(02 — 2603) sin(62 — 03) sin 03

$(0) =
2(6) 28

)

_ cos 0> + 2 csc?(62 — 203) sin(02 — 63) sin 03 o 4csc?(0r — 263) sin(62 — 63) sin 03

$3(0) =
3(0) 28 28

)

where we switched to 623 = aws 3/2.

@ The above expansion coefficients are related to the conformal block according to the
general identification formula.

@ NB! The same results follow from the explicit geodesic length formula.
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Conclusions & outlooks

Conclusions

@ We have computed the 5-point heavy-light conformal block in the super-light
approximation up to the third order with respect to the conformal dimension of one of the
three light fields. The computation has been done in two independent ways: using the
monodromy and the geodesic approaches. The resulting expressions coincide.

@ We observe different aspects of the correspondence between the two methods. In
particular, we find that the boundary variables and equations have their counterparts in the
bulk consideration. There is also a precise relation between the accessory parameters and
the conserved angular momenta of the different geodesic segments.

The similarity between bulk and boundary computations leads to the natural assumption that in
the present context the AdS3/CFT, correspondence is to be understood in a strong sense, i.e. as
two different descriptions of the same Liouville theory in the semiclassical limit ¢ — co.
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