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Higher Derivatives in HS interactions

HS interactions contain higher derivatives

Nonanaliticity in Λ via dimensionless combination Λ−
1
2 ∂
∂x

By a seemingly local field redefinition (Prokushkin, MV 1998) induced

by the integrating flow it is possible to get rid of currents from HS field

equations including the stress tensor in the spin-two sector: the field

transformation induced by the integrating flow is nonlocal having the

form

φ→ φ′ = φ+
∑
n
anm(ρD)nφ (ρD)mφ+ . . . ,

ρ is the AdS radius, D is the space-time covariant derivative.

The problem: find restrictions on anm distinguishing between truly non-

local and generalized local field redefinitions containing an infinite num-

ber of terms but anm decrease fast enough with n and m.

The problems in AdSd and Minkowski space are essentially different
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Greens function example

Consider a massive field equation

(� +m2)φ = 0

The Green function

G = (� +m2)−1

can be represented in the pseudolocal form

G = m−2
∞∑
n=0

(
−

�

m2

)n
Green function is non-local: not decreasing expansion coefficients imply

nonlocality.

m2 is a counterpart of Λ for massless particles in AdS
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The idea: to look for a class of field redefinitions which

• are closed under successive application: form an algebra

• rule out obviously nonlocal field redefinitions like integration flow

In the unfolded form of HS theories the space-time dependence is

encoded in twistor-like variables ZA and Y A. The problem is to find

restrictions on the coefficients bnmkl in

φ→ φ′ = φ+
∑
nmkl

bnmkl

((
∂

∂Z

)n( ∂

∂Y

)m
φ

)((
∂

∂Z

)k( ∂

∂Y

)l
φ

)
+ . . .
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Nonlinear HS equations

W(Z;Y ; k, k̄|x) = (d +W ) + S , W = dxnWn , S = θαSα + θ̄α̇S̄α̇

W ?W = i(θAθA + ηθαθαB ? k ? κ+ η̄θ̄α̇θ̄α̇B ? k̄ ? κ̄)

W ? B = B ?W , B = B(Z;Y ; k, k̄|x)

HS star product

(f ? g)(Z;Y ) =
1

(2π)4

∫
d4U d4V exp [iUAV

A] f(Z + U ;Y + U)g(Z − V ;Y + V )

This is the normal-ordered product with respect to Y ± Z
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Klein operators and supertrace

Klein operator

κ = exp izαy
α , κ ? κ = 1

κ ? f(z, y) = f(−z,−y) ? κ

Supertrace

str(f(z, y)) =
1

(2π)2

∫
d2u d2v exp [−iuαvβ] f(u, v)

str(f ? g) = str(g ? f)

Klein operators have well-defined star product but divergent supertrace

str(κ) ∼ δ4(0)
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Perturbative analysis

The standard vacuum solution is B = 0 and

W0 = dx +Q+W0(Y |x) , Q := θAZA

The space-time one-form W0(Y |x) solves the flatness equation

dxW0(Y |x) +W0(Y |x) ? W0(Y |x) = 0 .

The star-commutator with Q yields de Rham derivative in ZA

Q ? f(Z;Y )− (−1)degff(Z;Y ) ? Q = −2idZf(Z;Y ) , dZ = θA
∂

∂ZA

Standard homotopy formula:

dZg(θZ;Z;Y ) = f(θZ;Z;Y ) =⇒ g(θZ;Z;Y ) = ∂∗Zf + dZε+ g(0; 0;Y ) ,

∂∗Zf := d∗ZH(f) , H(f) :=
∫ 1

0
dττ−1f(τθZ; τZ;Y ) , d∗Z = ZA

∂

∂θA
.

dZε: exact forms

g(0; 0;Y ): de Rham cohomology
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Via homotopy formula Klein operators generate perturbative solution

f(Z;Y ) =
∫ 1

0
dτϕ(Z;Y ; τ) exp iτZAY

A ,

ϕ(Z;Y ; τ) =
∞∑

n,m=0

ϕA1,...,An ,B1,...,Bm(τ)ZA1 . . . ZAnY B1 . . . Y Bm

with the coefficients ϕA1,...,An ,B1,...,Bm(τ) integrable in τ . Distributions in

τ are allowed. Behavior of ϕA1,...,An ,B1,...,Bm(τ) determine properties of

f(Z;Y ) with respect to twistorial variables Z, Y and, by virtue of the

unfolded equations, in space-time coordinates x.

(f1 ? f2)(Z;Y ) =
∫
dτ1,2ϕ1,2(Z;Y ; τ1,2) exp iτ1,2ZAY

A ,

ϕ1,2(Z;Y ; τ1,2) =
1

(2π)M

∫
dτ1dτ2dSdTδ(τ1,2 − τ1 � τ2) exp iSAT

A

ϕ1((1− τ2)Z − τ2Y + S; (1− τ2)Y − τ2Z + S; τ1)

ϕ2((1− τ1)Z + τ1Y − T ; τ1Z + (1− τ1)Y + T ; τ2) ,

a � b = a+ b− 2ab = a(1− b) + b(1− a)

is commutative a � b = b � a and associative product in R or C
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Key observation

The idea is to specify appropriate classes of functions ϕ(Z;Y ; τ).

The key observation is that the space V0,0 of functions of the form

f(Z;Y ) =
∫ 1

0
dτφ(τZ; (1− τ)Y ; τ) exp iτZAY

A

with φ(W ;U ; τ) regular in W and U and integrable in τ is closed under the

HS star product. Being accompanied by the factor of τ and 1 − τ the

dependence on Z and Y trivializes at τ → 0 and τ → 1,

Such behavior is appropriate for the perturbative analysis of HS theory.

Coefficients of ZnY m will contain the decreasing factor∫ 1

0
dttn(1− t)m = β(n,m) =

n!m!

(n+m+ 1)!
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Proof

For f1,2 ∈ V0,0

ϕ1,2(W ;U ; τ1,2) =
1

(2π)M

∫
dSdT exp iSAT

A
∫ 1

0
dτ1dτ2δ(τ1,2 − τ1 � τ2)

φ1(τ1[(1− τ2)W − τ2U + S]; (1− τ1)[(1− τ2)U − τ2W + S]; τ1)

φ2(τ2[(1− τ1)W + τ1U − T ]; (1− τ2)[τ1W + (1− τ1)U + T ]; τ2)

Elementary relations

τ1 � τ2 = (1− τ1)τ2 + (1− τ2)τ1 ,

1− τ1 � τ2 = (1− τ1)(1− τ2) + τ1τ2

imply the square decomposition inequalities

(1− τ1)τ2 = α(τ1, τ2)τ1 � τ2 , (1− τ2)τ1 = β(τ1, τ2)τ1 � τ2 ,

(1− τ1)(1− τ2) = γ(τ1, τ2)(1− τ1 � τ2) , τ1τ2 = ρ(τ1, τ2)(1− τ1 � τ2)

α(τ1, τ2), β(τ1, τ2), γ(τ1, τ2), ρ(τ1, τ2) ∈ [0,1] .

Hence f1, f2 ∈ V0,0: f1 ∗ f2 ∈ V0,0
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Spaces Vk,l

Vk,l is the space of such star-product elements that

φ(W ;U ; τ) = τk(1− τ)lφ′(W ;U ; τ)

A (poly)logarithmic dependence on τ and 1 − τ does not affect k and l

The spaces Vk,l have the fundamental composition property

Vk1,l1 ? Vk2,l2 ⊂ Vmin(k1,l2)+min(k2,l1)+1 ,min(k1,k2)+min(l1,l2)+1

This follows from square decomposition inequalities along with the fact

that the integral∫ 1

0
dτ1

∫ 1

0
dτ2δ(τ − τ1 � τ2) = − log((1− 2τ)2)

behaves as τ at τ → 0 and 1− τ at τ → 1
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Spaces Vk,l,p

For θ-dependent differential forms f(θZ;Z;Y ) ∈ Vk, l,p if f(θZ;Z;Y ) is a

p-form with coefficients in Vk, l.

Q ∈ V−2,∞,1

because both δ(τ) and τ−1 in Q =
∫ 1
0 dτδ(τ)τ−1(τθAZA) bring negative con-

tribution to the first index of V−2, l,1. Since [Q , . . .]∗ ∼ dZ = θA ∂
∂ZA

,

[Q ,Vk,l,p]? ⊂ Vk+1,l−1,p+1 .

For Q-closed f ∈ Vk,l,p a solution to dZg = f is

∂∗Zf(θZ;Z;Y ) = ZA
∂

∂θA

∫ 1

0

ds

s

∫ 1

0
dτφ(sθZ; sτZ; (1− τ)Y ; τ) exp isτZAY

A

An elementary analysis shows

∂∗ZVk,l,p ⊂ Vmin(p−1,k)−1 , l+1 , p−1
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Field algebra

HS field algebra H appropriate for perturbative analysis of HS equations:

H := ⊕Mp=0Hp , Hp := Vp−1,M−p−1,p .

Using that any p-form in θZ with p > M is zero it follows

Hp ?Hq ⊂ Hp+q =⇒ H ?H ⊂ H

[Q ,Hp]? ⊂ Hp+1 , ∂∗ZHp ⊂ Hp−1 , ∂∗ZH0 = 0

Although H is invariant under the action of the homotopy operator ∂∗Z
and derivative dZ, Q ∈ V−2,∀l,1 /∈ H Q induces outer derivation of H. The

HS connection W should be written in the form

W = dx +Q+W ′ , W ′ ∈ H .

Theorem : Since θαθα ? κ ∈ H, θ̄α̇θ̄α̇ ? κ̄ ∈ H W ′ and B resulting from the

perturbative solution of the HS equations belong to H
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Local HS algebra

Hloc = ⊕Mp=0H
loc
p , Hlocp ⊂ Vp−1,M−p−1+ε,p , ∀ε > 0

The difference between Hloc and H is dominated by any rational behavior

in 1− τ .

Hlocp ?Hlocq ⊂ Hlocp+q

Theorem : Hloc is an algebra invariant under the action of the homotopy

operator ∂∗Z and dZ.

It follows that the supertrace of elements of Hp diverges as

str(Hp) ∼
∫ 1

0
dτ(1− τ)−1−p . . . .

Theorem : Elements of Hloc0 have well-defined supertrace.
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Locality conjecture

A field redefinition φ→ φ′ = f(φ)

f(φ) = f +
∑
g,h,...

(g1 ? φ ? g2 + h1 ? φ ? h2 ? φ ? h3 + . . .) ,

of φ = W ′, B ∈ H where summation is over various f, g, h, . . .. f(φ) is local

if f, g, h, . . . ∈ Hloc, minimally nonlocal if f, g, h, . . . ∈ H and strongly nonlocal

otherwise. Since (H)Hloc is an algebra, the composition of any two local

transformations is local.

Conjecture I: local transformations provide a proper generalization of the

local transformations in Minkowski space.

The integrating flow of Prokushkin, MV (1998) is nonlocal

Conjecture II: gauge transformations with parameters in H are allowed.

Those beyond H are not: specification of allowed gauge transformation

is important for application of quasi gauge transformations that “gauge

away” the space-time dependence: the final answer should belong to H.
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HS star product versus Weyl

Formal map to the Weyl star product

fW (Z;Y ) =
1

(2π)M

∫
dSdT exp−iSATAfHS(Z + S;Y + T ) ,

Being equivalent for polynomials, different star products may be inequiv-

alent beyond this class.

Weyl-Moyal star product

(fW ? gW )(Z;Y ) =
1

(2π)2M

∫
dUdV exp [i(−U1AV

A
1 + U2AV

A
2 )]

fW (Z + U1;Y + U2)gW (Z + V1;Y + V2)

The map is singular at Z 6= 0

fW (Z;Y ) =
1

(2π)M

∫ 1

0
dτ(1− τ)−M

∫
dSdT exp [−iSATA + i

τ

1− τ
ZAY

A]

φ
(
τS +

τ

1− τ
Z;Y + T ; τ

)
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Conclusion

Classes of star-product functions are identified distinguishing between

local and nonlocal field redefinitions in HS theory

The r.h.s.s of HS field equations are in the De Rham cohomology with

respect to the local class
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