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Intro

Second-order equations or Cubic Lagrangian is the first
nontrivial instance of HS interactions

Second-order equations, being derived from complete Vasiliev
equations, always know more than is accessible via genuine
cubic Noether procedure (Cubic action can be reconstructed
by comparing with equations→Massimo’s talk).

Second order equations lead to many interesting puzzles that
are crucial for understanding of AdS/CFT and HS (some
correlators have been rigorously computed in Giombi-Yin,
2009; but ... infinities, puzzles for the rest).
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Intro

C (s1, s2; 0) and C (0, s1; s2) for s1 > s2. The first problem is
that C (s, s; 0) = 0. Another one is that C (0, 0; s) is
inconsistent.

It is remarkable that interaction vertices in Vasiliev theory are
very close to CFT correlation functions — singularity at
coincident boundary points, the behaviour is not present in
local theory.

Moreover, one can show (V.Didenko, J.Mei, E.S, unpublished,
also Colombo and Sundell) that in W = 0 gauge it is very
easy to regularize kernels as to collapse B near the boundary
to traces

tr(K ? .... ? K ) = 〈j ...j〉

where K ? κ is a propagator for B . This explains and
generalizes the Giombi-Yin result, but ...
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Plan

We would like to systematically derive the interaction vertices
from the 4d Vasiliev theory; to make contact with the usual
methods of AdS/CFT, in particular, to work out the dictionary
with the metric-like approach and to investigate the problems
of extracting the correlation functions directly from the
unfolded equations, which immediately leads to a problem of
admissible functions vs. locality.
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Unfolded HS theory

The unfolded equations that describe HS interactions read

dω = F ω(ω,C ) ω-HS connection

dC = FC (ω,C ) C -Weyl tensors+der.

where the expansion is in HS Weyl tensors C

F ω(ω,C ) = ω ? ω + V(ω, ω,C ) + V(ω, ω,C ,C ) + ...

FC (ω,C ) = ω ? C − C ? ω̃ + V(ω,C ,C ) + ...

and F ’s are constrained by Frobenius integrability condition
d2 ≡ 0, which implies certain gauge symmetry.

Perturbative C -expansion is effectively re-summed by Vasiliev
equations — need (?) to dig therein to extract F ’s
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Higher-spin algebra in 4d

Isomorphism so(3, 2) ∼ sp(4,R) allows (Vasiliev, 1986) to
give a simple realization of the HS algebra. A quartet of
canonical oscillators

[Y A,Y B ] = 2iCAB CAB is an sp(4) metric

leads to oscillator realization of sp(4) via bilinears

TAB = − i

4
{Y A,Y B} [TAB ,TCD ] = TADCBC + ...

and then can be extended to all reasonable functions of Y

f (Y ) ? g(Y ) = exp i
←−
∂ AC

AB−→∂ B =

∫
e iV

AUAf (Y + U)g(Y + V )

Sometimes it is convenient to split Y A into yα and ȳ α̇
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First order

Free equations read:

Dω = V(h, h,C ) ωα(s−1±k),α̇(s−1∓k)

D̃C = 0 Cα(2s+k),α̇(k) ⊕ Cα(k),α̇(2s+k)

and are equivalent to Fronsdal equation

(� + m2)φm(s) + ... = 0

imposed on the symmetric part of the HS vielbein

φm(s) = eα(s−1),α̇(s−1)
m hm|αα̇...hm|αα̇

Cocycle V(h, h,C ) defines the Weyl tensor

∇n(s)φm(s) = Cn(s),m(s)

which obeys the Bianchi identities

∇[rCn(s−1)r ,m(s−1)r ] = 0

The rest are derivatives of the Fronsdal field or pure gauge.
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First order

dotted

undotted

eα(s−1),α̇(s−1)

C α̇(2s)ωα̇(2s−2)

Cα(2s)

ωα(2s−2)V(h, h,C )
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Second order

The most general equations at the second order are

Dω2 = ω ? ω + V(h, ω,C ) + V(h, h,C ,C ) + V(h, h,C2)

D̃C2 = ω ? C − C ? ω̃ + V(h,C ,C )

where some of the cocycles are explicitly determined by the
HS algebra. ω ? C − C ? ω̃ is the only tested!

It is important to have nontrivial interactions. Purely
star-product interactions should be (!) trivial

dω = ω ? ω + ω ? ω ? C + ...

as they can be redefined ω → ω + ω ? C . The difference
between this and nontrivial is subtle.
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Vasiliev equations

This is what we solve to the second order

dW = W ?W ,

d(B ? κ) = [W ,B ? κ]? , d(B ? κ̄) = [W ,B ? κ̄]? ,

dSα = [W ,Sα]? , dS̄α̇ = [W , S̄α̇]? ,

[Sα,Sβ]? = −2iεαβ(1 + e iθB ? κ) , [S̄α̇, S̄β̇]? = −2iεα̇β̇(1 + e−iθB ? κ̄) ,

{Sα,B ? κ}? = 0 , {S̄α̇,B ? κ̄}? = 0 ,

[Sα, S̄α̇]? = 0 ,

where κ = e izαyα

, κ̄ = e i z̄α̇ȳ α̇

and all fields take values in an extension of

the HS algebra with four additional ZA oscillators that are crucial for the

equations to lead to HS interactions.

E. Skvortsov Interactions in 4d Vasiliev theory



Extracting unfolded equations

Shifting everything by the vacuum W = AdS , S = ZCdZ
C +A

∂A = A ? A + B ? Υ

∂B = A ? B − B ? Υ−1 ? A ? Υ

∂W = −[h + W ,A]

where ∂ = dZA∂ZA , A = ACdZ
C and Υ = (κe+iθ, κ̄e−iθ), h is

a vielbein. One can solve for the Z -dependence (in the
Schwinger-Fock gauge ZCAC = 0)

A = ∂−1(A ? A + B ? Υ)

B = C (Y ) + ∂−1(A ? B − B ? Υ−1 ? A ? Υ)

W = ω(Y )− ∂−1[h + W ,A]

where C (Y ), ω(Y ) are the physical fields we are looking for
equations for.
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Extracting unfolded equations

The solutions for the Z -evolution need to be plugged into the
two last equations

DW = W ?W + Lorentz D̃B = W ? B − B ? W̃

to extract the equations in terms of C (Y ) and ω(Y ). There is
also an additional piece due to the requirement for the true
Lorentz generators to preserve the Schwinger-Fock gauge,
otherwise the spin-connection will appear outside the covariant
derivative, which, for example, makes it difficult to relate HS
vielbeins to Fronsdal fields. Lorentz redefinition contributes to
the stress-tensors.
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Second-order summary

we used Fourier transformed fields

C (y , ȳ |x) =

∫
d4ξ e iY ξC (ξ|x) .

and for the most complicated cocycle V(h, h,C ,C )

V(h, h,C ,C ) =

∫
d2ξ d2ηHααJαα(Y , ξ, η)C (ξ|x)C (η|x) + h.c . ,

where Hαα is a basis two-form (vielbein squared). Applying
∂−1 contributes homotopy integrals (at most two now)

∂νf
ν = g(z) fα = zα

∫ 1

0

dt t g(zt)
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Second-order summary

The most complicated cocycle V(h, h,C ,C ) still fits the slide

J = Hαα(y + ξ)α(y + η)αQ
(
iq2t2 + (ξ̄η̄)

qt(1− qt)

2

)
+

− i

2
H α̇α̇ξ̄α̇η̄α̇Q+

+
i

2
(1− t)H α̇α̇ξ̄α̇η̄α̇P +

i

2
H α̇α̇∂α̇∂α̇K + h.c .

(the very first term is due to the Lorentz redefinition)

K = exp i
(
tηξ + (ȳ − η̄)(ȳ + ξ̄) + 2θ

)
Q = exp i

(
(qt(y + η)(y + ξ) + (ȳ − η̄)(ȳ + ξ̄) + 2θ

)
P = Q

∣∣∣
q=1

This is to be compared with the 3d case!
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Checking consistency

Dω2 = ω ? ω + V(h, ω,C ) + V(h, h,C ,C ) + V(h, h,C2)

D̃C2 = ω ? C − C ? ω̃ + V(h,C ,C )

There are components on the r.h.s. of Dω2 = ... that redefines
Weyl tensors C2. Therefore C2 is not the Weyl tensor and its
identification as order-s derivative of the Fronsdal tensor is
wrong (but perhaps this still can be true near the boundary as
in Giombi and Yin (puzzles))!

The cocyles are not D-closed independently, but cocyle
V(h, h,C ,C ) (after K is dropped) is D-conserved:

DV(h, h,C ,C ) = 0

which makes it possible to identify it as stress-tensors.
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Frame-like vs. metric-like dictionary

In general at the second order one expects to find a chain of
Fronsdal equations with sources

(� + m2)φm(s) + ... = jm(s)(φ, φ)

Projecting onto the Weyl tensor simplifies equations a lot

(� + M2)∇n(s)φm(s) = ∇n(s)jm(s)(φ, φ)

for example, the canonical scalar field’s stress-tensors consists
of one term only

φ
←→
∇m(s) φ + O(Λ) =⇒ ∇n(s)φ∇m(s)φ
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Solving for Torsion

We need the first two equations

∇e + σ−ω1 = J0

∇ω1 + σ−ω2 + σ+e = J1

HS equations in unfolded form always have a non-vanishing
Torsion (solving for it destroys the beautiful structure):

ω1 = σ−1
− J0 − σ−1

− ∇e

Plugging it to the second one and projecting redundant
component we find

σ+e −∇σ−1
− ∇e = j j = J1 −∇σ−1

− J0

The l.h.s. makes the Fronsdal operator
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Getting Fronsdal current

Everything can be expanded as (canonical form)

ω(y , ȳ) = hαα∂α∂α̇ω
1 + yαhα

α̇ ∂α̇ω
2 + y α̇hαα̇ ∂αω

3 + yαy α̇hαα̇ω
4

which for any structure, e.g. J0, costs no more than two
homotopy integrals. Then, σ−1

− has number operators N−1 or
(N + 2)−1, which adds one more integral:

(N + 2)−1f (y) =

∫ 1

0

dt t f (ty)

Taking ∇ again destroys the canonical form, which costs one
more integral

fα(y) = ∂α
[
N−1y νfν

]
+ yα

[
(N + 2)−1∂νf

ν
]

We end up with no more than 6 integrals in total, which can
bring L−6 at best, where L is the number of contracted indices
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Getting ∇s of the Fronsdal current

s − 0− 0 is a closed subsector corresponding to V(h,C ,C )

D̃C2 = ω ? C − C ? ω̃ + V(h,C ,C )

The problem is analogous to solving for Torsion (two first
order equations with a source instead of a single second order
equation for Weyl tensor C α̇(2s))

(�−(4 + 2N̄))C (0, ȳ) =∫
2(ȳ ξ̄ + ȳ η̄))e i [tηξ+(ȳ−η̄)(ȳ+ξ̄)+θ]C (ξ)C (η) + h.c .

In particular we can see that the source vanishes for the scalar
ȳ = 0 and therefore there is no scalar self-coupling as was
observed by Sezgin and Sundell, which is in accordance with
the O(n)-model.
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Pseudo-local stress-tensors vs. improvements

In HS we generally find, e.g. the Fronsdal current,

jm(s) =
∑
k

ak∇m..∇m∇n(k)Φ∇m..∇m∇n(k)Φ

From flat (ambient) space we know that there are

canonical currents jcana(s) = φ
←→
∂ a(s)φ

canonical currents with cross-contractions, i.e.
(∂1 · ∂2)Ljcana(s)

on-shell trivial terms ∼ �φ

other improvements evaluated on-shell

the 3rd we cannot see now, the 2nd generate pseudo-local
tails, the 4th can be quotiented out.
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Canonical current sector

While HS symmetry downgraded to a simple AdS background
leaves some remnants in the form of improvements, we do not
expect those to contribute to three-point functions. The
explicit projection is

J = Hααξ−α ξ
−
αQ
(
iq2t2 + (ξ̄η̄)

qt(1− qt)

2

)
+

− i

2
H α̇α̇ξ̄+

α̇ ξ̄
+
α̇Q+

+
i

2
(1− t)H α̇α̇ξ̄+

α̇ ξ̄
+
α̇P + h.c .

ξ±α = ξα ± ηα
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Pseudo-local stress-tensors vs. locality

In HS we generally find, e.g. the Fronsdal current,

jm(s) =
∑
k

ak∇m..∇m∇n(k)Φ∇m..∇m∇n(k)Φ

For example,

C ? C ∼ jα(s),α̇(s) ∼
∑
L,L̄

1

L!L̄!
Cα(s)ν(L),ν̇(L̄)C

ν(L),ν̇(L̄)
α̇(s)

∼
∑
k

1

L!L!
∇n(L)Cα(s)∇n(L)Cα̇(s)

Contractions can be eaten by � ∼ L2 which makes the series
divergent. Therefore, pure star-product
redefinitions/expansions are nonlocal.
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Pseudo-local stress-tensors vs. locality

In HS we generally find, e.g. the Fronsdal current,

jm(s) =
∑
k

ak∇m..∇m∇n(k)Φ∇m..∇m∇n(k)Φ

One can take them seriously and plug into the action∫
ddx φj . One contraction of indices can be eaten by � and

integrated by parts, yielding some prefactor ck . If the sum∑
k

ckak

is convergent then the pseudo-local expression is actually local.
Otherwise, usual field-theory recipes cannot be applied. See
Massimo’s talk
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Conclusions

4d Vasiliev theory at the second order is much more
concise than the 3d one. The vertices are explicitly found.

The frame-like vs. Fronsdal dictionary is worked out and
the stress-tensors are derived.

We also revealed some subtleties in AdS/CFT
computations
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