Interactions in 4*d* Vasiliev theory Higher Spin Theories and Holography

Zhenya Skvortsov

Albert Einstein Institute and Lebedev Institute

June, 4, 2015

*

*Based on the work to in progress, with N.Boulanger, P.Kessel and M.Taronna $(\Box \mapsto \langle \Box \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle)$

Second-order equations or Cubic Lagrangian is the first nontrivial instance of HS interactions

Second-order equations, being derived from complete Vasiliev equations, always know more than is accessible via genuine cubic Noether procedure (Cubic action can be reconstructed by comparing with equations \rightarrow Massimo's talk).

Second order equations lead to many interesting puzzles that are crucial for understanding of AdS/CFT and HS (some correlators have been rigorously computed in Giombi-Yin, 2009; but ... infinities, puzzles for the rest).

・ 同 ト ・ ヨ ト ・ ヨ ト

 $C(s_1, s_2; 0)$ and $C(0, s_1; s_2)$ for $s_1 > s_2$. The first problem is that C(s, s; 0) = 0. Another one is that C(0, 0; s) is inconsistent.

It is remarkable that interaction vertices in Vasiliev theory are very close to CFT correlation functions — singularity at coincident boundary points, the behaviour is not present in local theory.

Moreover, one can show (V.Didenko, J.Mei, E.S, unpublished, also Colombo and Sundell) that in W = 0 gauge it is very easy to regularize kernels as to collapse *B* near the boundary to traces

$$tr(K \star \star K) = \langle j...j \rangle$$

where $K \star \varkappa$ is a propagator for *B*. This explains and generalizes the Giombi-Yin result, but ...

イロト イヨト イヨト イヨト

We would like to systematically derive the interaction vertices from the 4*d* Vasiliev theory; to make contact with the usual methods of AdS/CFT, in particular, to work out the dictionary with the metric-like approach and to investigate the problems of extracting the correlation functions directly from the *unfolded equations*, which immediately leads to a problem of admissible functions vs. locality. The unfolded equations that describe HS interactions read

$$d\omega = F^{\omega}(\omega, C)$$
 ω -HS connection
 $dC = F^{C}(\omega, C)$ C -Weyl tensors+der.

where the expansion is in HS Weyl tensors C

$$F^{\omega}(\omega, C) = \omega \star \omega + \mathcal{V}(\omega, \omega, C) + \mathcal{V}(\omega, \omega, C, C) + \dots$$

$$F^{C}(\omega, C) = \omega \star C - C \star \tilde{\omega} + \mathcal{V}(\omega, C, C) + \dots$$

and *F*'s are constrained by Frobenius integrability condition $d^2 \equiv 0$, which implies certain gauge symmetry.

Perturbative C-expansion is effectively re-summed by Vasiliev equations — need (?) to dig therein to extract F's

Higher-spin algebra in 4d

Isomorphism $so(3,2) \sim sp(4,\mathbb{R})$ allows (Vasiliev, 1986) to give a simple realization of the HS algebra. A quartet of canonical oscillators

 $[Y^A, Y^B] = 2iC^{AB}$ C^{AB} is an sp(4) metric

leads to oscillator realization of sp(4) via bilinears

$$T^{AB} = -\frac{i}{4} \{ Y^A, Y^B \}$$
 $[T^{AB}, T^{CD}] = T^{AD} C^{BC} + ...$

and then can be extended to all reasonable functions of Y

$$f(Y) \star g(Y) = \exp i \overleftrightarrow{\partial}_A C^{AB} \overrightarrow{\partial}_B = \int e^{iV^A U_A} f(Y+U) g(Y+V)$$

Sometimes it is convenient to split Y^A into y^{lpha} and $ar{y}^{\dot{lpha}}$

→ 米屋→ 米屋→ 一屋

First order

Free equations read:

$$\begin{aligned} \mathcal{D}\omega &= \mathcal{V}(h, h, C) & \omega^{\alpha(s-1\pm k), \dot{\alpha}(s-1\mp k)} \\ \widetilde{\mathsf{D}}C &= 0 & C^{\alpha(2s+k), \dot{\alpha}(k)} \oplus C^{\alpha(k), \dot{\alpha}(2s+k)} \end{aligned}$$

and are equivalent to Fronsdal equation

$$(\Box + m^2)\phi_{\underline{m}(s)} + \ldots = 0$$

imposed on the symmetric part of the HS vielbein

$$\phi_{\underline{m}(s)} = e_{\underline{m}}^{\alpha(s-1),\dot{\alpha}(s-1)} h_{\underline{m}|\alpha\dot{\alpha}} \dots h_{\underline{m}|\alpha\dot{\alpha}}$$

Cocycle $\mathcal{V}(h, h, C)$ defines the Weyl tensor

$$\nabla_{\underline{n}(s)}\phi_{\underline{m}(s)} = C_{\underline{n}(s),\underline{m}(s)}$$

which obeys the Bianchi identities

$$\nabla_{[\underline{r}} C_{\underline{n}(s-1)\underline{r},\underline{m}(s-1)\underline{r}]} = 0$$

The rest are derivatives of the Fronsdal field or pure gauge.

First order

The most general equations at the second order are

$$\mathcal{D}\omega_2 = \omega \star \omega + \mathcal{V}(h, \omega, C) + \mathcal{V}(h, h, C, C) + \mathcal{V}(h, h, C_2)$$
$$\widetilde{\mathsf{D}}C_2 = \omega \star C - C \star \widetilde{\omega} + \mathcal{V}(h, C, C)$$

where some of the cocycles are explicitly determined by the HS algebra. $\omega \star C - C \star \tilde{\omega}$ is the only tested!

It is important to have nontrivial interactions. Purely star-product interactions should be (!) trivial

$$d\omega = \omega \star \omega + \omega \star \omega \star C + \dots$$

as they can be redefined $\omega \rightarrow \omega + \omega \star C$. The difference between this and nontrivial is subtle.

This is what we solve to the second order

$$\begin{split} dW &= W \star W, \\ d(B \star \varkappa) &= [W, B \star \varkappa]_{\star}, \qquad d(B \star \bar{\varkappa}) = [W, B \star \bar{\varkappa}]_{\star}, \\ dS_{\alpha} &= [W, S_{\alpha}]_{\star}, \qquad d\bar{S}_{\dot{\alpha}} = [W, \bar{S}_{\dot{\alpha}}]_{\star}, \\ [S_{\alpha}, S_{\beta}]_{\star} &= -2i\epsilon_{\alpha\beta}(1 + e^{i\theta}B \star \varkappa), \qquad [\bar{S}_{\dot{\alpha}}, \bar{S}_{\dot{\beta}}]_{\star} = -2i\epsilon_{\dot{\alpha}\dot{\beta}}(1 + e^{-i\theta}B \star \bar{\varkappa}), \\ \{S_{\alpha}, B \star \varkappa\}_{\star} &= 0, \qquad \{\bar{S}_{\dot{\alpha}}, B \star \bar{\varkappa}\}_{\star} = 0, \\ [S_{\alpha}, \bar{S}_{\dot{\alpha}}]_{\star} &= 0, \end{split}$$

where $\varkappa = e^{iz_{\alpha}y^{\alpha}}$, $\bar{\varkappa} = e^{i\bar{z}_{\dot{\alpha}}\bar{y}^{\dot{\alpha}}}$ and all fields take values in an extension of the HS algebra with four additional Z^A oscillators that are crucial for the equations to lead to HS interactions.

Extracting unfolded equations

Shifting everything by the vacuum W = AdS, $S = Z_C dZ^C + A$

$$\partial A = A \star A + B \star \Upsilon$$
$$\partial B = A \star B - B \star \Upsilon^{-1} \star A \star \Upsilon$$
$$\partial W = -[h + W, A]$$

where $\partial = dZ^A \partial_A^Z$, $A = A_C dZ^C$ and $\Upsilon = (\varkappa e^{+i\theta}, \overline{\varkappa} e^{-i\theta})$, *h* is a vielbein. One can solve for the *Z*-dependence (in the Schwinger-Fock gauge $Z^C A_C = 0$)

$$A = \partial^{-1}(A \star A + B \star \Upsilon)$$

$$B = C(Y) + \partial^{-1}(A \star B - B \star \Upsilon^{-1} \star A \star \Upsilon)$$

$$W = \omega(Y) - \partial^{-1}[h + W, A]$$

where C(Y), $\omega(Y)$ are the physical fields we are looking for equations for.

The solutions for the Z-evolution need to be plugged into the two last equations

$$DW = W \star W + \text{Lorentz}$$
 $\widetilde{D}B = W \star B - B \star \tilde{W}$

to extract the equations in terms of C(Y) and $\omega(Y)$. There is also an additional piece due to the requirement for the true Lorentz generators to preserve the Schwinger-Fock gauge, otherwise the spin-connection will appear outside the covariant derivative, which, for example, makes it difficult to relate HS vielbeins to Fronsdal fields. Lorentz redefinition contributes to the stress-tensors.

Second-order summary

we used Fourier transformed fields

$$C(y,\overline{y}|x) = \int d^4\xi \, e^{iY\xi} C(\xi|x) \, .$$

and for the most complicated cocycle $\mathcal{V}(h, h, C, C)$

$$\mathcal{V}(h,h,C,C) = \int d^2\xi \, d^2\eta \, H^{\alpha\alpha} J_{\alpha\alpha}(Y,\xi,\eta) \, C(\xi|x) C(\eta|x) + h.c. \,,$$

where $H^{\alpha\alpha}$ is a basis two-form (vielbein squared). Applying ∂^{-1} contributes homotopy integrals (at most two now)

$$\partial_{\nu}f^{\nu} = g(z)$$
 $f_{\alpha} = z_{\alpha}\int_{0}^{1}dt t g(zt)$

Second-order summary

The most complicated cocycle $\mathcal{V}(h, h, C, C)$ still fits the slide

$$\begin{split} J &= H^{\alpha\alpha}(y+\xi)_{\alpha}(y+\eta)_{\alpha}Q\Big(iq^{2}t^{2}+(\bar{\xi}\bar{\eta})\frac{qt(1-qt)}{2}\Big) + \\ &-\frac{i}{2}H^{\dot{\alpha}\dot{\alpha}}\bar{\xi}_{\dot{\alpha}}\bar{\eta}_{\dot{\alpha}}Q + \\ &+\frac{i}{2}(1-t)H^{\dot{\alpha}\dot{\alpha}}\bar{\xi}_{\dot{\alpha}}\bar{\eta}_{\dot{\alpha}}P + \frac{i}{2}H^{\dot{\alpha}\dot{\alpha}}\partial_{\dot{\alpha}}\partial_{\dot{\alpha}}K + h.c. \end{split}$$

(the very first term is due to the Lorentz redefinition)

$$K = \exp i \left(t\eta\xi + (\bar{y} - \bar{\eta})(\bar{y} + \bar{\xi}) + 2\theta \right)$$
$$Q = \exp i \left((qt(y + \eta)(y + \xi) + (\bar{y} - \bar{\eta})(\bar{y} + \bar{\xi}) + 2\theta \right)$$
$$P = Q\Big|_{q=1}$$

This is to be compared with the 3d case!

白 と く ヨ と く ヨ と …

$$\mathcal{D}\omega_2 = \omega \star \omega + \mathcal{V}(h, \omega, C) + \mathcal{V}(h, h, C, C) + \mathcal{V}(h, h, C_2)$$
$$\widetilde{\mathsf{D}}C_2 = \omega \star C - C \star \widetilde{\omega} + \mathcal{V}(h, C, C)$$

There are components on the r.h.s. of $D\omega_2 = ...$ that redefines Weyl tensors C_2 . Therefore C_2 is not the Weyl tensor and its identification as order-*s* derivative of the Fronsdal tensor is wrong (but perhaps this still can be true near the boundary as in Giombi and Yin (puzzles))!

The cocyles are not *D*-closed independently, but cocyle $\mathcal{V}(h, h, C, C)$ (after *K* is dropped) is *D*-conserved:

 $D\mathcal{V}(h, h, C, C) = 0$

which makes it possible to identify it as stress-tensors.

In general at the second order one expects to find a chain of Fronsdal equations with sources

$$(\Box + m^2)\phi_{\underline{m}(s)} + \ldots = j_{\underline{m}(s)}(\phi, \phi)$$

Projecting onto the Weyl tensor simplifies equations a lot

$$(\Box + M^2)\nabla_{\underline{n}(s)}\phi_{\underline{m}(s)} = \nabla_{\underline{n}(s)}j_{\underline{m}(s)}(\phi,\phi)$$

for example, the canonical scalar field's stress-tensors consists of one term only

$$\phi \overleftrightarrow{\nabla}_{\underline{m}(s)} \phi + O(\Lambda) \implies \nabla_{\underline{n}(s)} \phi \nabla_{\underline{m}(s)} \phi$$

We need the first two equations

$$\nabla \boldsymbol{e} + \boldsymbol{\sigma}_{-} \boldsymbol{\omega}_{1} = \boldsymbol{J}_{0}$$
$$\nabla \boldsymbol{\omega}_{1} + \boldsymbol{\sigma}_{-} \boldsymbol{\omega}_{2} + \boldsymbol{\sigma}_{+} \boldsymbol{e} = \boldsymbol{J}_{1}$$

HS equations in unfolded form always have a non-vanishing Torsion (solving for it destroys the beautiful structure):

$$\omega_1 = \sigma_-^{-1} J_0 - \sigma_-^{-1} \nabla e$$

Plugging it to the second one and projecting redundant component we find

$$\sigma_+ e - \nabla \sigma_-^{-1} \nabla e = j \qquad \qquad j = J_1 - \nabla \sigma_-^{-1} J_0$$

The l.h.s. makes the Fronsdal operator

Getting Fronsdal current

Everything can be expanded as (canonical form)

$$\omega(y,\bar{y}) = h^{\alpha\alpha}\partial_{\alpha}\partial_{\dot{\alpha}}\omega^{1} + y^{\alpha}h_{\alpha}{}^{\dot{\alpha}}\partial_{\dot{\alpha}}\omega^{2} + y^{\dot{\alpha}}h^{\alpha}{}_{\dot{\alpha}}\partial_{\alpha}\omega^{3} + y^{\alpha}y^{\dot{\alpha}}h_{\alpha\dot{\alpha}}\omega^{4}$$

which for any structure, e.g. J_0 , costs no more than two homotopy integrals. Then, σ_{-}^{-1} has number operators N^{-1} or $(N+2)^{-1}$, which adds one more integral:

$$(N+2)^{-1}f(y) = \int_0^1 dt \ t \ f(ty)$$

Taking ∇ again destroys the canonical form, which costs one more integral

$$f_{\alpha}(y) = \partial_{\alpha} \left[N^{-1} y^{\nu} f_{\nu} \right] + y_{\alpha} \left[(N+2)^{-1} \partial_{\nu} f^{\nu} \right]$$

We end up with no more than 6 integrals in total, which can bring L^{-6} at best, where L is the number of contracted indices

Getting ∇^s of the Fronsdal current

s - 0 - 0 is a closed subsector corresponding to $\mathcal{V}(h, C, C)$

$$\widetilde{\mathsf{D}}\mathsf{C}_2 = \omega \star \mathsf{C} - \mathsf{C} \star \widetilde{\omega} + \mathcal{V}(\mathsf{h},\mathsf{C},\mathsf{C})$$

The problem is analogous to solving for Torsion (two first order equations with a source instead of a single second order equation for Weyl tensor $C^{\dot{\alpha}(2s)}$)

$$egin{aligned} &(\Box-(4+2ar{N}))C(0,ar{y})=\ &\int 2(ar{y}ar{\xi}+ar{y}ar{\eta}))e^{i[t\eta\xi+(ar{y}-ar{\eta})(ar{y}+ar{\xi})+ heta]}C(\xi)C(\eta)+h.c. \end{aligned}$$

In particular we can see that the source vanishes for the scalar $\bar{y} = 0$ and therefore there is no scalar self-coupling as was observed by Sezgin and Sundell, which is in accordance with the O(n)-model.

In HS we generally find, e.g. the Fronsdal current,

$$j_{\underline{m}(s)} = \sum_{k} a_{k} \nabla_{\underline{m}} ... \nabla_{\underline{m}} \nabla_{\underline{n}(k)} \Phi \nabla_{\underline{m}} ... \nabla_{\underline{m}} \nabla^{\underline{n}(k)} \Phi$$

From flat (ambient) space we know that there are

- canonical currents $j^{can}_{\mathbf{a}(s)} = \phi \overleftrightarrow{\partial}_{\mathbf{a}(s)} \phi$
- canonical currents with cross-contractions, i.e. $(\partial_1 \cdot \partial_2)^L j_{a(s)}^{can}$
- on-shell trivial terms $\sim \Box \phi$
- other improvements evaluated on-shell

the 3rd we cannot see now, the 2nd generate pseudo-local tails, the 4th can be quotiented out.

While HS symmetry downgraded to a simple AdS background leaves some remnants in the form of improvements, we do not expect those to contribute to three-point functions. The explicit projection is

$$J = H^{\alpha\alpha}\xi_{\alpha}^{-}\xi_{\alpha}^{-}Q\left(iq^{2}t^{2} + (\bar{\xi}\bar{\eta})\frac{qt(1-qt)}{2}\right) + \frac{i}{2}H^{\dot{\alpha}\dot{\alpha}}\bar{\xi}_{\dot{\alpha}}^{+}\bar{\xi}_{\dot{\alpha}}^{+}Q + \frac{i}{2}(1-t)H^{\dot{\alpha}\dot{\alpha}}\bar{\xi}_{\dot{\alpha}}^{+}\bar{\xi}_{\dot{\alpha}}^{+}P + h.c.$$

$$\xi_{\alpha}^{\pm} = \xi_{\alpha} \pm \eta_{\alpha}$$

Pseudo-local stress-tensors vs. locality

In HS we generally find, e.g. the Fronsdal current,

$$j_{\underline{m}(s)} = \sum_{k} a_{k} \nabla_{\underline{m}} .. \nabla_{\underline{m}} \nabla_{\underline{n}(k)} \Phi \nabla_{\underline{m}} .. \nabla_{\underline{m}} \nabla^{\underline{n}(k)} \Phi$$

For example,

$$C \star C \sim j_{\alpha(s),\dot{\alpha}(s)} \sim \sum_{L,\bar{L}} \frac{1}{L!\bar{L}!} C_{\alpha(s)\nu(L),\dot{\nu}(\bar{L})} C^{\nu(L),\dot{\nu}(\bar{L})}{}_{\dot{\alpha}(s)}$$
$$\sim \sum_{k} \frac{1}{L!L!} \nabla_{\underline{n}(L)} C_{\alpha(s)} \nabla^{\underline{n}(L)} C_{\dot{\alpha}(s)}$$

Contractions can be eaten by $\Box \sim L^2$ which makes the series divergent. Therefore, pure star-product redefinitions/expansions are nonlocal.

In HS we generally find, e.g. the Fronsdal current,

$$j_{\underline{m}(s)} = \sum_{k} a_{k} \nabla_{\underline{m}} .. \nabla_{\underline{m}} \nabla_{\underline{n}(k)} \Phi \nabla_{\underline{m}} .. \nabla_{\underline{m}} \nabla^{\underline{n}(k)} \Phi$$

One can take them seriously and plug into the action $\int d^d x \, \phi j$. One contraction of indices can be eaten by \Box and integrated by parts, yielding some prefactor c_k . If the sum

$$\sum_k c_k a_k$$

is convergent then the pseudo-local expression is actually local. Otherwise, usual field-theory recipes cannot be applied. See Massimo's talk

- 4*d* Vasiliev theory at the second order is much more concise than the 3*d* one. The vertices are explicitly found.
- The frame-like vs. Fronsdal dictionary is worked out and the stress-tensors are derived.
- We also revealed some subtleties in AdS/CFT computations