TOWARDS HOLOGRAPHIC HIGHER SPIN INTERACTIONS

DMITRY PONOMAREV

LUDWIG-MAXIMILIANS UNIVERSITY

Moscow, June 3, 2015

ARXIV: 1412.0016 AND WORK IN PROGRESS [WITH X. BEKAERT, J. ERDMENGER AND C. SLEIGHT]

QUEST FOR QUARTIC INTERACTIONS

[VASILIEV'90][METSAEV'91][TARONNA'11][DEMPSTER, TSULAIA'12]

QUEST FOR QUARTIC INTERACTIONS

[VASILIEV'90][METSAEV'91][TARONNA'11][DEMPSTER, TSULAIA'12]

LOCALITY OF HOLOGRAPHIC BULK DUALS

[GARY, GIDDINGS, PENEDONES'09][HEEMSKERK, PENEDONES, POLCHINSKI, SULLY'09]

QUEST FOR QUARTIC INTERACTIONS

[VASILIEV'90][METSAEV'91][TARONNA'11][DEMPSTER, TSULAIA'12]

LOCALITY OF HOLOGRAPHIC BULK DUALS

[GARY, GIDDINGS, PENEDONES'09][HEEMSKERK, PENEDONES, POLCHINSKI, SULLY'09]

LOCALITY IN HS THEORIES

CLEAR DEFINITION OF LOCALITY/NON-LOCALITY FOR THEORIES WITH INFINITELY MANY DERIVATIVES

$$\phi^2 \frac{1}{\Box} \phi^2$$
 vs $\phi^2 \frac{1}{\Box - \Lambda} \phi^2$ vs $\phi^2 \exp(\Box) \phi^2$

QUEST FOR QUARTIC INTERACTIONS

[VASILIEV'90][METSAEV'91][TARONNA'11][DEMPSTER, TSULAIA'12]

LOCALITY OF HOLOGRAPHIC BULK DUALS

[GARY, GIDDINGS, PENEDONES'09][HEEMSKERK, PENEDONES, POLCHINSKI, SULLY'09]

LOCALITY IN HS THEORIES

CLEAR DEFINITION OF LOCALITY/NON-LOCALITY FOR THEORIES WITH INFINITELY MANY DERIVATIVES

$$\phi^2 \frac{1}{\Box} \phi^2$$
 vs $\phi^2 \frac{1}{\Box - \Lambda} \phi^2$ vs $\phi^2 \exp(\Box) \phi^2$

NON-TRIVIAL TESTS OF THE HOLOGRAPHIC HIGHER SPIN CONJECTURE

[SEZGIN, SUNDELL'02][KLEBANOV, POLYAKOV'02]

NONLINEARITY AT QUARTIC ORDER

 $\delta_0 S_4 + \delta_1 S_3 + \delta_2 S_2 = 0$

NONLINEARITY AT QUARTIC ORDER

 $\delta_0 S_4 + \delta_1 S_3 + \delta_2 S_2 = 0$

QUADRATIC IN DEFORMATIONS

NONLINEARITY AT QUARTIC ORDER

$$\delta_0 S_4 + \delta_1 S_3 + \delta_2 S_2 = 0$$

QUADRATIC IN DEFORMATIONS

PROLIFERATION OF DIFFERENT STRUCTURES

$$\varphi^3 \rightarrow \sum_{n,s} a_{n,s} \varphi \partial_{\mu_1} \dots \partial_{\mu_s} \varphi \Box^n (\varphi \partial^{\mu_1} \dots \partial^{\mu_s} \varphi)$$

NONLINEARITY AT QUARTIC ORDER

$$\delta_0 S_4 + \delta_1 S_3 + \delta_2 S_2 = 0$$

QUADRATIC IN DEFORMATIONS

PROLIFERATION OF DIFFERENT STRUCTURES

$$\varphi^3 \rightarrow \sum_{n,s} a_{n,s} \varphi \partial_{\mu_1} \dots \partial_{\mu_s} \varphi \Box^n (\varphi \partial^{\mu_1} \dots \partial^{\mu_s} \varphi)$$

DERIVATIVES DO NOT COMMUTE IN ADS

HIGHER SPIN HOLOGRAPHY

BULK: MINIMAL VASILIEV'S THEORY IN 4D

$$S = \int \sqrt{g} d^4x \nabla^{\mu_1} \varphi^{\mu_2 \dots \mu_{s+1}} \nabla_{\mu_1} \varphi_{\mu_2 \dots \mu_{s+1}} + \dots$$

$$\delta \varphi_{\mu_1...\mu_s} = \nabla_{\mu_1} \xi_{\mu_2...\mu_s} + \dots \qquad s = 0, \ 2, \ 4, \ \dots \ \infty$$

HIGHER SPIN HOLOGRAPHY

BULK: MINIMAL VASILIEV'S THEORY IN 4D

$$S = \int \sqrt{g} d^4x \nabla^{\mu_1} \varphi^{\mu_2 \dots \mu_{s+1}} \nabla_{\mu_1} \varphi_{\mu_2 \dots \mu_{s+1}} + \dots$$

$$\delta\varphi_{\mu_1\dots\mu_s} = \nabla_{\mu_1}\xi_{\mu_2\dots\mu_s} + \dots \qquad s = 0, \ 2, \ 4, \ \dots \ \infty$$

BOUNDARY: FREE O(N) VECTOR MODEL IN 3D

$$S = \int d^3x \partial^\mu \phi^a \partial_\mu \phi_a$$

$$J_{\mu_1\dots\mu_s} = \phi^a \partial_{\mu_1}\dots\partial_{\mu_s} \phi_a + \dots, \qquad \partial^{\mu_1} J_{\mu_1\dots\mu_s} = 0$$

HIGHER SPIN HOLOGRAPHY

BULK: MINIMAL VASILIEV'S THEORY IN 4D

$$S = \int \sqrt{g} d^4x \nabla^{\mu_1} \varphi^{\mu_2 \dots \mu_{s+1}} \nabla_{\mu_1} \varphi_{\mu_2 \dots \mu_{s+1}} + \dots$$

$$\delta\varphi_{\mu_1\dots\mu_s} = \nabla_{\mu_1}\xi_{\mu_2\dots\mu_s} + \dots \qquad s = 0, \ 2, \ 4, \ \dots \ \infty$$

BOUNDARY: FREE O(N) VECTOR MODEL IN 3D

$$S = \int d^3x \partial^\mu \phi^a \partial_\mu \phi_a$$

$$J_{\mu_1\dots\mu_s} = \phi^a \partial_{\mu_1}\dots\partial_{\mu_s} \phi_a + \dots, \qquad \partial^{\mu_1} J_{\mu_1\dots\mu_s} = 0$$

DUALITY: $\varphi_{\mu_1...\mu_s} \leftrightarrow J_{\mu_1...\mu_s}$

CUBIC VERTICES

 $\langle J_{s_1}(y_1) J_{s_2}(y_2) J_{s_3}(y_3) \rangle$

CUBIC VERTICES

 $\langle J_{s_1}(y_1) J_{s_2}(y_2) J_{s_3}(y_3) \rangle$

QUARTIC VERTICES

ALREADY KNOWN

u- and t-channels

 $= \langle J_{s_1}(y_1) J_{s_2}(y_2) J_{s_3}(y_3) J_{s_4}(y_4) \rangle$

CUBIC VERTICES

 $\langle J_{s_1}(y_1) J_{s_2}(y_2) J_{s_3}(y_3) \rangle$

QUARTIC VERTICES

u- and t-channels

 $= \langle J_{s_1}(y_1) J_{s_2}(y_2) J_{s_3}(y_3) J_{s_4}(y_4) \rangle$

TO START: QUARTIC VERTEX FOR SCALAR FIELDS

INGREDIENTS

3-POINT FUNCTIONS AND WITTEN DIAGRAMS

BULK PROPAGATOR

BULK EXCHANGE

BULK CONTACT 4-POINT INTERACTION

4-POINT CFT CORRELATOR

PUTTING TOGETHER

3-PT FUNCTIONS

CFT: $\langle J^{0}(x_{1})J^{0}(x_{2})J^{s}_{\mu_{1}...\mu_{s}}(x_{3})\rangle = C_{00s}\frac{\left(\frac{x_{13}}{r_{13}} - \frac{x_{23}}{r_{23}}\right)_{\mu_{1}}...\left(\frac{x_{13}}{r_{13}} - \frac{x_{23}}{r_{23}}\right)_{\mu_{s}}}{r_{12}^{\frac{\Delta_{1}+\Delta_{2}-\Delta_{3}+s}{2}}r_{13}^{\frac{\Delta_{3}+\Delta_{1}-\Delta_{2}-s}{2}}r_{23}^{\frac{\Delta_{3}+\Delta_{2}-\Delta_{1}-s}{2}}}$ $J^{0}(x) =: \phi^{a}(x)\phi_{a}(x): \qquad J^{s}_{\mu(s)}(x) =: \phi^{a}(x)\partial_{\mu_{1}}...\partial_{\mu_{s}}\phi_{a}(x): + ...$

 $\Delta_1 = \Delta_2 = d - 2$

$$\Delta_3 = d + s - 2$$

3-PT FUNCTIONS

 $\begin{aligned} \mathbf{CFT:} \\ \langle J^{0}(x_{1})J^{0}(x_{2})J^{s}_{\mu_{1}\dots\mu_{s}}(x_{3})\rangle &= C_{00s}\frac{\left(\frac{x_{13}}{r_{13}} - \frac{x_{23}}{r_{23}}\right)_{\mu_{1}}\dots\left(\frac{x_{13}}{r_{13}} - \frac{x_{23}}{r_{23}}\right)_{\mu_{s}}}{r_{12}^{\frac{\Delta_{1}+\Delta_{2}-\Delta_{3}+s}{2}}r_{13}^{\frac{\Delta_{3}+\Delta_{1}-\Delta_{2}-s}{2}}r_{23}^{\frac{\Delta_{3}+\Delta_{2}-\Delta_{1}-s}{2}}} \\ J^{0}(x) &=: \phi^{a}(x)\phi_{a}(x): \qquad J^{s}_{\mu(s)}(x) &=: \phi^{a}(x)\partial_{\mu_{1}}\dots\partial_{\mu_{s}}\phi_{a}(x): + \dots \\ \Delta_{1} &= \Delta_{2} &= d-2 \qquad \Delta_{3} &= d+s-2 \end{aligned}$

Notations: $J^0 \rightarrow \mathcal{O}$ $J^s \rightarrow \mathcal{J}^s$ $\Delta(\mathcal{O}) \rightarrow \Delta$

3-PT FUNCTIONS

 $\begin{aligned} \mathbf{CFT:} \\ \langle J^{0}(x_{1})J^{0}(x_{2})J^{s}_{\mu_{1}...\mu_{s}}(x_{3})\rangle &= C_{00s}\frac{\left(\frac{x_{13}}{r_{13}} - \frac{x_{23}}{r_{23}}\right)_{\mu_{1}}...\left(\frac{x_{13}}{r_{13}} - \frac{x_{23}}{r_{23}}\right)_{\mu_{s}}}{\frac{\Delta_{1} + \Delta_{2} - \Delta_{3} + s}{r_{12}}\frac{\Delta_{3} + \Delta_{1} - \Delta_{2} - s}{r_{13}}\frac{\Delta_{3} + \Delta_{2} - \Delta_{1} - s}{r_{23}}} \\ J^{0}(x) &=: \phi^{a}(x)\phi_{a}(x): \qquad J^{s}_{\mu(s)}(x) =: \phi^{a}(x)\partial_{\mu_{1}}...\partial_{\mu_{s}}\phi_{a}(x): + \dots \\ \Delta_{1} &= \Delta_{2} = d - 2 \qquad \Delta_{3} = d + s - 2 \end{aligned}$

NOTATIONS:

$$J^{\circ} \rightarrow O$$

 $\Delta(O) \rightarrow O$

$$J^s \rightarrow J^s$$

DOING WICK CONTRACTIONS

$$C_{00s} = \frac{2^{s/2+3/2}}{\sqrt{s!}\sqrt{N}} \frac{(d/2-1)_s}{\sqrt{(d+s-3)_s}}$$

[DIAZ, DORN'06]

BULK:

 $g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} J_{\mu_1 \dots \mu_s}$ $\sim 2^s g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} \varphi \nabla_{\mu_1} \dots \nabla_{\mu_s} \varphi$

BULK:

$$g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} J_{\mu_1 \dots \mu_s}$$
$$\sim 2^s g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} \varphi \nabla_{\mu_1} \dots \nabla_{\mu_s} \varphi$$

HIGHER-SPIN BULK-TO-BOUNDARY PROPAGATOR

$$\Pi_s(X,W;P,Z) \sim \frac{(2(Z \cdot X)(P \cdot W) - 2(W \cdot Z)(P \cdot X))^s}{(-2X \cdot P)^{\Delta_s + s}} - \text{traces}$$

[MIKHAILOV'02]

BULK:

$$g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} J_{\mu_1 \dots \mu_s}$$
$$\sim 2^s g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} \varphi \nabla_{\mu_1} \dots \nabla_{\mu_s} \varphi$$

HIGHER-SPIN BULK-TO-BOUNDARY PROPAGATOR

$$\Pi_s(X,W;P,Z) \sim \frac{(2(Z \cdot X)(P \cdot W) - 2(W \cdot Z)(P \cdot X))^s}{(-2X \cdot P)^{\Delta_s + s}} - \text{traces}$$

[MIKHAILOV'02]

AMBIENT FORMALISM FOR ADS

 $\begin{array}{rcl} AdS_{d+1} & \rightarrow & \mathbb{R}^{d+2}, & g = \mathrm{diag}(+,+,-,\ldots,-) \\ AdS_{d+1} & \mathrm{bulk} & \rightarrow & X^2 = 1 \\ & \mathrm{boundary} & \rightarrow & P^2 = 0, & P \sim \alpha P \\ & W & \mathrm{and} & Z & \rightarrow & \mathrm{auxiliary \, vectors} \end{array}$

BULK:

$$g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} J_{\mu_1 \dots \mu_s}$$
$$\sim 2^s g_{00s} \int_{AdS} d^{d+1}x \sqrt{g} \varphi^{\mu_1 \dots \mu_s} \varphi \nabla_{\mu_1} \dots \nabla_{\mu_s} \varphi$$

HIGHER-SPIN BULK-TO-BOUNDARY PROPAGATOR

$$\Pi_s(X,W;P,Z) \sim \frac{(2(Z \cdot X)(P \cdot W) - 2(W \cdot Z)(P \cdot X))^s}{(-2X \cdot P)^{\Delta_s + s}} - \text{traces}$$

[MIKHAILOV'02]

AMBIENT FORMALISM FOR ADS

$$AdS_{d+1} \rightarrow \mathbb{R}^{d+2}, \quad g = \text{diag}(+, +, -, \dots, -$$
$$AdS_{d+1} \text{ bulk} \rightarrow X^2 = 1$$
$$\text{boundary} \rightarrow P^2 = 0, \quad P \sim \alpha P$$
$$W \text{ and } Z \rightarrow \text{ auxiliary vectors}$$

PRODUCES A WELL-KNOWN INTEGRAL

[PAULOS'11][COSTA,GONCALVES,PENEDONES'14]

MATCHING BULK & CFT

$$g_{00s} = \frac{2^{4-s/2}}{\sqrt{N}\Gamma(s)}$$

BULK TO BULK PROPAGATOR

WARNING: IT IS NOT JUST TRACELESS-TRANSVERSE

SCALAR

$$G(v) \sim v^{-\Delta}{}_2F_1\left(\Delta, \Delta - \frac{d}{2} + \frac{1}{2}; 2\Delta - d + 1; \frac{1}{v}\right)$$

GRAVITON

[D'HOKER, FREEDMAN, MATHUR, MATUSIS, RASTELLI'99]

SPIN-3 & SPIN-4

[LEONHARDT, RUEHL, MANVELYAN'03]

OTHER RESULTS FOR HS

[FRANCIA, MOURAD, SAGNOTTI'08][MKRTCHYAN'10]

SPLIT REPRESENTATION

$$\Omega_{\nu}(X,X') \propto \int_{\partial AdS} dP \frac{1}{(-2P \cdot X)^{d/2+i\nu}} \frac{1}{(-2P \cdot X')^{d/2-i\nu}}$$

where $1/(-2P \cdot X)^{\Delta}$ is a bulk-to-boundary propagator with $m^2 = \Delta(\Delta - d)$

SPLIT REPRESENTATION

$$\Omega_{\nu}(X,X') \propto \int_{\partial AdS} dP \frac{1}{(-2P \cdot X)^{d/2+i\nu}} \frac{1}{(-2P \cdot X')^{d/2-i\nu}}$$

where $1/(-2P \cdot X)^{\Delta}$ is a bulk-to-boundary propagator with $m^2 = \Delta(\Delta - d)$

 $(\Box + (d/2)^2 + \nu^2) \,\Omega_{\nu} = 0$

$$\int d\nu \,\Omega_{\nu}(X,X') = \delta(X,X')$$

SPLIT REPRESENTATION

$$\Omega_{\nu}(X,X') \propto \int_{\partial AdS} dP \frac{1}{(-2P \cdot X)^{d/2+i\nu}} \frac{1}{(-2P \cdot X')^{d/2-i\nu}}$$

where $1/(-2P \cdot X)^{\Delta}$ is a bulk-to-boundary propagator with $m^2 = \Delta(\Delta - d)$

 $(\Box + (d/2)^2 + \nu^2) \,\Omega_{\nu} = 0$

$$\int d\nu \,\Omega_{\nu}(X,X') = \delta(X,X')$$

SCALAR BULK-TO-BULK PROPAGATOR

$$\Pi_{\Delta}(X, X') = \int \frac{d\nu}{\nu^2 + (\Delta - d/2)^2} \Omega_{\nu}(X, X')$$

DOBREV, LEONHARDT, RUEHL, MANVELYAN, COSTA, PAULOS, PENEDONES + OTHER LITERATURE ON MELLIN AMPLITUDES

SPLIT REPRESENTATION FOR HS

TT HS HARMONIC FUNCTION

 $\Omega_{\nu,s}(X,X';W,W') \propto \int_{\partial AdS} dP \,\Pi_{d/2+i\nu}(X,P;W,\partial/\partial Z) \,\Pi_{d/2-i\nu}(X',P;W',Z)$

TRACELESS BASIS

 $\left\{ ((W \cdot \nabla)(W' \cdot \nabla'))^{s-l} \Omega_{\nu,l}(X, X'; W, W') \right\}_{\mathrm{Tr} = 0}$

[COSTA, GONCALVES, PENEDONES'14]

COMPLETE HS MASSLESS PROPAGATOR

FRONSDAL EQUATION WITH A SOURCE

 $(1 - 1/4u_1^2 \partial_{u_1} \cdot \partial_{u_1}) \mathcal{F}_s(x_1, u_1, \nabla_1) \Pi_s(x_1, u_1, x_2, u_2) =$ $-\{\{(u_1 \cdot u_2)^2\}\} \delta(x_1, x_2) + (u_2 \cdot \nabla_2) \Lambda(x_1, u_1, x_2, u_2)$

COMPLETE HS MASSLESS PROPAGATOR

FRONSDAL EQUATION WITH A SOURCE

 $(1 - 1/4u_1^2 \partial_{u_1} \cdot \partial_{u_1}) \mathcal{F}_s(x_1, u_1, \nabla_1) \Pi_s(x_1, u_1, x_2, u_2) =$ $-\{\{(u_1 \cdot u_2)^2\}\} \delta(x_1, x_2) + (u_2 \cdot \nabla_2) \Lambda(x_1, u_1, x_2, u_2)$

$$\Pi_{s} = \sum_{j=0}^{\lfloor s/2 \rfloor} \int d\nu g_{s,j}(\nu) (g_{AA})^{j} (g'_{AA})^{j} \Omega_{\nu,s-2j}$$

$$g_{s,0}(\nu) = \frac{1}{(h+s-2)^2 + \nu^2}$$

$$g_{s,j}(\nu) = \frac{(1/2)_{j-1}}{2^{2j+3} \cdot j!} \frac{(s-2j+1)_{2j}}{(h+s-j)_j(h+s-j-3/2)_j} \times \frac{(h/2+s/2-j+i\nu/2)_{j-1}(h/2+s/2-j-i\nu/2)_{j-1}}{(h/2+s/2-j+1/2+i\nu/2)_j(h/2+s/2-j+1/2-i\nu/2)_j}$$

COMPLETE HS MASSLESS PROPAGATOR

FRONSDAL EQUATION WITH A SOURCE

 $(1 - 1/4u_1^2 \partial_{u_1} \cdot \partial_{u_1}) \mathcal{F}_s(x_1, u_1, \nabla_1) \Pi_s(x_1, u_1, x_2, u_2) =$ $-\{\{(u_1 \cdot u_2)^2\}\} \delta(x_1, x_2) + (u_2 \cdot \nabla_2) \Lambda(x_1, u_1, x_2, u_2)$

$$\Pi_{s} = \sum_{j=0}^{\lfloor s/2 \rfloor} \int d\nu g_{s,j}(\nu) (g_{AA})^{j} (g'_{AA})^{j} \Omega_{\nu,s-2j}$$

$$g_{s,0}(\nu) = \frac{1}{(h+s-2)^{2}+\nu^{2}}$$

$$g_{s,j}(\nu) = \frac{(1/2)_{j-1}}{2^{2j+3} \cdot j!} \frac{(s-2j+1)_{2j}}{(h+s-j)_{j}(h+s-j-3/2)_{j}} \times$$

$$\frac{(h/2+s/2-j+i\nu/2)_{j-1}(h/2+s/2-j-i\nu/2)_{j-1}}{(h/2+s/2-j+1/2-i\nu/2)_{j}} \qquad (a)_{n} = \frac{\Gamma(a+n)}{\Gamma(a)}$$

$$h = \frac{d}{2}$$

$$[(h+s-1)^2 + \nu^2][(h+s-3)^2 + \nu^2] \dots$$

$$\Delta = d+s-1, \ d+s-3, \ \dots$$

[BEKAERT, ERDMENGER, P., SLEIGHT'14]

EXCHANGES. SPLIT REPRESENTATION

$$F_{\nu,s}(u,v) = \int_{\partial AdS} d^d y \langle \mathcal{O}_0(y_1) \mathcal{O}_0(y_2) \mathcal{O}_{h+i\nu,s}(y) \rangle \langle \mathcal{O}_{h-i\nu,s}(y) \mathcal{O}(y_3) \mathcal{O}(y_4) \rangle$$

$$F_{\nu,s}(u,v) = \kappa(\nu,s)G_{h+i\nu}(u,v) + \kappa(-\nu,s)G_{h-i\nu,s}(u,v)$$

PRODUCES THE CONFORMAL BLOCK DECOMPOSITION!

[COSTA, GONCALVES, PENEDONES'14]

REFINING THE VERTEX

 $V_3 \neq \varphi^{\mu_1 \dots \mu_s} \varphi \nabla_{\mu_1} \dots \nabla_{\mu_s} \varphi$

CONSISTENCY WITH GAUGE INVARIANCE

$$V_3 = \varphi^{\mu_1 \dots \mu_s} J_{\mu_1 \dots \mu_s}, \qquad \nabla^{\mu_1} J_{\mu_1 \dots \mu_s} = 0$$

REFINING THE VERTEX

$$V_3 \neq \varphi^{\mu_1 \dots \mu_s} \varphi \nabla_{\mu_1} \dots \nabla_{\mu_s} \varphi$$

CONSISTENCY WITH GAUGE INVARIANCE

$$V_3 = \varphi^{\mu_1 \dots \mu_s} J_{\mu_1 \dots \mu_s}, \qquad \nabla^{\mu_1} J_{\mu_1 \dots \mu_s} = 0$$

IN FLAT SPACE

$$J^{\mu_1\dots\mu_s} = \varphi(x)(\overleftarrow{\partial}^{\mu} - \partial^{\mu})^s \varphi(x), \qquad \partial^{\mu_1} J_{\mu_1\dots\mu_s} = 0$$

REFINING THE VERTEX

$$V_3 \neq \varphi^{\mu_1 \dots \mu_s} \varphi \nabla_{\mu_1} \dots \nabla_{\mu_s} \varphi$$

CONSISTENCY WITH GAUGE INVARIANCE

$$V_3 = \varphi^{\mu_1 \dots \mu_s} J_{\mu_1 \dots \mu_s}, \qquad \nabla^{\mu_1} J_{\mu_1 \dots \mu_s} = 0$$

IN FLAT SPACE

$$\underbrace{J^{\mu_1\dots\mu_s}}_{F} = \varphi(x) (\overleftarrow{\partial}^{\mu} - \partial^{\mu})^s \varphi(x), \qquad \partial^{\mu_1} J_{\mu_1\dots\mu_s} = 0$$

IN ADS

view J as an ambient space current

+

project to AdS hyperboloid

NO COMPACT FORM IN INTRINSIC TERMS

[BEKAERT, MEUNIER'10]
HS EXCHANGE IN GENERAL DIMENSIONS

$$\mathcal{A}_s(y_1, y_2, y_3, y_4) = \sum_{k=0}^{[s/2]} \int d\nu \, b_{s-2k}(\nu) F_{\nu, s-2k}(u, v)$$

$$b_{s-2k}(\nu) = (g_{00s})^2 \frac{4^{s-2k}g_{s,k}\tau_{s,k}^2\Gamma^2\left(\frac{3-2h-2(s-2k)}{2}\right)\Gamma^2(1-h-(s-2k))}{\pi^{3h+1}2^{4h+6(s-2k)+3}\Gamma^2(2-2h-2(s-2k))\Gamma^4(\Delta+1-h)}$$

$$\tau_{s,k}(\nu) = \sum_{m=0}^{k} \frac{2^{2k} \cdot k!}{m!(k-m)!} (\Delta - h - k + m + 1/2)_{k-m} \\ \times \left(\frac{h+s-2m+1+i\nu}{2}\right)_{m} \left(\frac{h+s-2m+1-i\nu}{2}\right)_{m}$$

[BEKAERT, ERDMENGER, P., SLEIGHT'14]

HS EXCHANGE IN GENERAL DIMENSIONS

$$\mathcal{A}_s(y_1, y_2, y_3, y_4) = \sum_{k=0}^{[s/2]} \int d\nu \, b_{s-2k}(\nu) F_{\nu, s-2k}(u, v)$$

$$b_{s-2k}(\nu) = (g_{00s})^2 \frac{4^{s-2k}g_{s,k}\tau_{s,k}^2\Gamma^2\left(\frac{3-2h-2(s-2k)}{2}\right)\Gamma^2(1-h-(s-2k))}{\pi^{3h+1}2^{4h+6(s-2k)+3}\Gamma^2(2-2h-2(s-2k))\Gamma^4(\Delta+1-h)}$$

 $\Delta = \Delta(\varphi_0)$

$$\tau_{s,k}(\nu) = \sum_{m=0}^{k} \frac{2^{2k} \cdot k!}{m!(k-m)!} (\Delta - h - k + m + 1/2)_{k-m} \\ \times \left(\frac{h+s-2m+1+i\nu}{2}\right)_{m} \left(\frac{h+s-2m+1-i\nu}{2}\right)_{m}$$

[BEKAERT, ERDMENGER, P., SLEIGHT'14]

IMPROVEMENTS

CURRENT IMPROVEMENTS

\rightarrow

ON-SHELL TRIVIAL VERTICES

 $\mathcal{V}_3 \sim \varphi_0 \varphi_0 \Box \varphi_s$

 $\Box \Pi_s(X, X') \sim \delta(X, X')$

HS EXCHANGE IN D=4

SIMPLIFICATION: CURRENTS ARE TRACELESS

$\begin{aligned} \mathcal{A}(P_1, P_2; P_3, P_4) \\ &= \frac{g_{00s}^2}{(P_1 \cdot P_2)(P_3 \cdot P_4)} \int_{-\infty}^{+\infty} d\nu \, \frac{2^{-2i\nu+2s-3}\Gamma(i\nu+\frac{1}{2})\Gamma^2\left(\frac{1}{4}(2s+2i\nu+1)\right)}{\pi^{5/2}\Gamma(i\nu)(2i\nu+2s+1)} \\ &\qquad \times \frac{\Gamma^2\left(\frac{1}{4}(2s-2i\nu+1)\right)}{(\nu^2+(s-\frac{1}{2})^2)} G_{h+i\nu,s}(u,v) \end{aligned}$

HS EXCHANGE IN D=4

SIMPLIFICATION: CURRENTS ARE TRACELESS

$$\mathcal{A}(P_1, P_2; P_3, P_4) = \frac{g_{00s}^2}{(P_1 \cdot P_2)(P_3 \cdot P_4)} \int_{-\infty}^{+\infty} d\nu \, \frac{2^{-2i\nu+2s-3}\Gamma(i\nu+\frac{1}{2})\Gamma^2\left(\frac{1}{4}(2s+2i\nu+1)\right)}{\pi^{5/2}\Gamma(i\nu)(2i\nu+2s+1)} \times \underbrace{\frac{\Gamma^2\left(\frac{1}{4}(2s-2i\nu+1)\right)}{(\nu^2+(s-\frac{1}{2})^2)}}_{G_{h+i\nu,s}(u,v)}$$

CLOSING THE CONTOUR IN THE LOWER HALF PLANE WE PICK THE POLES AT:

$$\underline{\nu} = -i(2n+s+1/2) \quad \Rightarrow \quad \Delta_s = h + i\nu = 2\Delta + n + s = 2d + 2n + s - 4$$

DOUBLE-TRACE OPERATORS

$$\mathcal{O}_{n,s} :=: \Box^n (\phi^a \phi_a) \partial_{\mu_1} \dots \partial_{\mu_s} (\phi^b \phi_b) :+ \dots$$
$$\Delta = \Delta(\varphi_0) = \Delta(\phi^a \phi_a)$$

HS EXCHANGE IN D=4

SIMPLIFICATION: CURRENTS ARE TRACELESS

$$\mathcal{A}(P_1, P_2; P_3, P_4) = \frac{g_{00s}^2}{(P_1 \cdot P_2)(P_3 \cdot P_4)} \int_{-\infty}^{+\infty} d\nu \frac{2^{-2i\nu+2s-3}\Gamma(i\nu+\frac{1}{2})\Gamma^2\left(\frac{1}{4}(2s+2i\nu+1)\right)}{\pi^{5/2}\Gamma(i\nu)(2i\nu+2s+1)} \times \underbrace{\frac{\Gamma^2\left(\frac{1}{4}(2s-2i\nu+1)\right)}{(\nu^2+(s-\frac{1}{2})^2)}}_{(\nu^2+(s-\frac{1}{2})^2)} G_{h+i\nu,s}(u,v)$$

CLOSING THE CONTOUR IN THE LOWER HALF PLANE WE PICK THE POLES AT:

$$\nu = -i(2n+s+1/2) \quad \Rightarrow \quad \Delta_s = h + i\nu = 2\Delta + n + s = 2d + 2n + s - 4$$

DOUBLE-TRACE OPERATORS

$$\mathcal{O}_{n,s} \coloneqq \Box^n(\phi^a \phi_a) \partial_{\mu_1} \dots \partial_{\mu_s}(\phi^b \phi_b) : + \dots$$

 $\Delta = \Delta(\varphi_0) = \Delta(\phi^a \phi_a)$

$$\nu = -i(s - 1/2) \quad \Rightarrow \quad \Delta_s = h + i\nu = \Delta + s = d + s - 2$$

SINGLE-TRACE OPERATORS (CONSERVED CURRENTS)

$$\mathcal{J}_s =: \phi^a \partial_{\mu_1} \dots \partial_{\mu_s} \phi_a :+ \dots$$

THE BASIS: $\mathcal{V}_{n,s} = J_{\mu_1\dots\mu_s} \Box^n (J^{\mu_1\dots\mu_s}), \quad s = 2k, \quad k \ge n \ge 0$

THE BASIS: $\mathcal{V}_{n,s} = J_{\mu_1...\mu_s} \Box^n (J^{\mu_1...\mu_s}), \quad s = 2k, \quad k \ge n \ge 0$

$$\mathcal{V} = J(x) \Box J(x) \longrightarrow J(x)\delta(x,x') \Box J(x') \longrightarrow J(x)\sum_{s} \int d\nu \Omega_{\nu,s}(x,x') \Box J(x')$$

THE BASIS: $\mathcal{V}_{n,s} = J_{\mu_1...\mu_s} \Box^n (J^{\mu_1...\mu_s}), \quad s = 2k, \quad k \ge n \ge 0$

$$\mathcal{V} = J(x) \Box J(x) \longrightarrow J(x)\delta(x,x') \Box J(x') \longrightarrow J(x) \sum_{s} \int d\nu \Omega_{\nu,s}(x,x') \Box J(x')$$

 $\mathcal{A}(P_1, P_2, P_3, P_4)$

$$= \frac{g_{n,s}}{(P_1 \cdot P_2)(P_3 \cdot P_4)} \int_{-\infty}^{+\infty} d\nu \frac{2^{-2i\nu+2s-3}\Gamma(i\nu+\frac{1}{2})\Gamma^2(\frac{1}{4}(2s+2i\nu+1))}{\pi^{5/2}\Gamma(i\nu)(2i\nu+2s+1)} \times (\nu^2+s+\frac{9}{4})^n\Gamma^2(\frac{1}{4}(2s-2i\nu+1))G_{h+i\nu,s}(u,v)$$

THE BASIS: $V_{n,s} = J_{\mu_1...\mu_s} \Box^n (J^{\mu_1...\mu_s}), \quad s = 2k, \quad k \ge n \ge 0$

$$\mathcal{V} = J(x) \Box J(x) \longrightarrow J(x)\delta(x,x') \Box J(x') \longrightarrow J(x)\sum_{s} \int d\nu \Omega_{\nu,s}(x,x') \Box J(x')$$

 $\mathcal{A}(P_1, P_2, P_3, P_4)$

$$= \frac{g_{n,s}}{(P_1 \cdot P_2)(P_3 \cdot P_4)} \int_{-\infty}^{+\infty} d\nu \frac{2^{-2i\nu+2s-3}\Gamma(i\nu+\frac{1}{2})\Gamma^2(\frac{1}{4}(2s+2i\nu+1))}{\pi^{5/2}\Gamma(i\nu)(2i\nu+2s+1)} \times (\nu^2+s+\frac{9}{4})^n\Gamma^2(\frac{1}{4}(2s-2i\nu+1))G_{h+i\nu,s}(u,v)$$

DOUBLE TRACE POLES

THE BASIS: $\mathcal{V}_{n,s} = J_{\mu_1\dots\mu_s} \Box^n (J^{\mu_1\dots\mu_s}), \quad s = 2k, \quad k \ge n \ge 0$

$$\mathcal{V} = J(x) \Box J(x) \longrightarrow J(x)\delta(x,x') \Box J(x') \longrightarrow J(x) \sum_{s} \int d\nu \Omega_{\nu,s}(x,x') \Box J(x')$$

 $\mathcal{A}(P_1, P_2, P_3, P_4)$

$$=\frac{g_{n,s}}{(P_1 \cdot P_2)(P_3 \cdot P_4)} \int_{-\infty}^{+\infty} d\nu \frac{2^{-2i\nu+2s-3}\Gamma(i\nu+\frac{1}{2})\Gamma^2(\frac{1}{4}(2s+2i\nu+1))}{\pi^{5/2}\Gamma(i\nu)(2i\nu+2s+1)} \times (\nu^2+s+\frac{9}{4})^n\Gamma^2(\frac{1}{4}(2s-2i\nu+1))G_{h+i\nu,s}(u,v)$$

THE ONLY DIFFERENCE WITH EXCHANGES

DOUBLE TRACE POLES

 $\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle \equiv$

 $\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle \equiv$

$$\mathcal{O} = \phi^a \phi_a$$
 $\bullet = \langle \phi(x)\phi(y) \rangle = \frac{1}{|x-y|^{2\delta}}$

OPE:

 $\mathcal{OO} \sim 1 + \sum_{s} \mathcal{J}_s + \sum_{n,s} \mathcal{O}_{n,s}$

 $\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle \equiv$

 $\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle \equiv$

 $\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle \equiv$

CONFORMAL BLOCK DECOMPOSITION

SINGLE TRACE PART IS KNOWN

[DIAZ, DORN'06]

DOUBLE TRACE PART?

IS KNOWN IN D=4 USING THE EXPLICIT FORMULA FOR CONFORMAL BLOCKS

[DOLAN, OSBORN'00]

WE NEED D=3!

METHODS IN GENERAL D

DIRECTLY THROUGH 3-PT & 2-PT FUNCTIONS

EMPLOYING EXPLICIT EXPRESSIONS FOR CONFORMAL BLOCKS

CONGLOMERATION

[FITZPATRICK, KAPLAN'11]

DIRECT METHOD $\mathcal{O}_{n,s} \to \mathcal{O}\partial_{\mu_1} \dots \partial_{\mu_s} \Box^n \mathcal{O} + \dots$?

PROBLEM:

$$K_{\mu}\mathcal{O}_1 = 0, \quad K_{\mu}\mathcal{O}_2 = 0, \quad \Delta(\mathcal{O}_1) = \Delta_1, \quad \Delta(\mathcal{O}_2) = \Delta_2$$

FIND

$$\begin{split} \mathcal{O}_{n,s} &\to \sum_{s_1,b_1,b_2} a_{s,n}(s_1,s_2;b_1,b_2,b_{12}) \partial_{a(s_1)} \Box^{b_1} \partial^{m(b_{12})} \mathcal{O}_1 \partial_{a(s_2)} \Box^{b_2} \partial_{m(b_{12})} \mathcal{O}_2 \\ \text{such that} & K_\mu \mathcal{O}_{n,s} = 0 \end{split}$$

DIRECT METHOD $\mathcal{O}_{n,s} \to \mathcal{O}\partial_{\mu_1} \dots \partial_{\mu_s} \Box^n \mathcal{O} + \dots$?

PROBLEM:

$$K_{\mu}\mathcal{O}_1 = 0, \quad K_{\mu}\mathcal{O}_2 = 0, \quad \Delta(\mathcal{O}_1) = \Delta_1, \quad \Delta(\mathcal{O}_2) = \Delta_2$$

FIND

S

$$\mathcal{O}_{n,s} \rightarrow \sum_{s_1,b_1,b_2} a_{s,n}(s_1,s_2;b_1,b_2,b_{12})\partial_{a(s_1)} \Box^{b_1} \partial^{m(b_{12})} \mathcal{O}_1 \partial_{a(s_2)} \Box^{b_2} \partial_{m(b_{12})} \mathcal{O}_2$$

Uch that $K_\mu \mathcal{O}_{n,s} = 0$

$$a_{s,n}(s_1, s_2; b_1, b_2, b_{12}) = \frac{s!}{s_1! s_2!} \frac{(\Delta_1 + s_1 + 2b_1 + b_{12})_{s_2}}{(\Delta_2 + 2b_2 + b_{12})_{s_2}(\Delta_1 + s_1 + n)_{b_1 - b_2}(\Delta_2 + s_2 + n)_{b_2 - b_1}} \\ \times \frac{(-1)^{s_2 + b_1 + b_2} n!}{2^{b_1 + b_2} b_1! b_2! (n - b_1 - b_2)!} \frac{(\Delta_1 + s + n)_{b_1}(\Delta_2 + s + n - b_1)_{b_2}}{(\Delta_1 + 1 - h)_{b_1}(\Delta_2 + 1 - h)_{b_2}} \\ \times \sum_{k=0}^{b_2} \frac{b_2!}{k! (b_2 - k)!} \frac{(b_1 - k + 1)_k (\Delta_1 + b_1 - h - k + 1)_k}{(\Delta_2 + s + n - b_1)_k (\Delta_1 + s + n + b_1 - k)_k}.$$

AGREES WITH PARTIAL RESULTS IN THE LITERATURE

[MIKHAILOV'02][PENEDONES'10][FITZPATRICK, KAPLAN'11]

OPE COEFFICIENTS

From $\langle \mathcal{OOO}_{n,s} \rangle$ and $\langle \mathcal{O}_{n,s} \mathcal{O}_{n,s} \rangle$

$$\begin{split} C^2_{\mathcal{OOO}_{n,s}} &= \left(1 + \frac{4}{N} (-1)^n \frac{\Gamma(s)}{\Gamma(\frac{s}{2})} \frac{\left(\frac{\Delta}{2}\right)_{n+\frac{s}{2}}}{\left(\frac{\Delta+1}{2}\right)_{\frac{s}{2}} (\Delta)_{n+\frac{s}{2}}} \right) \\ &\times \frac{\left[(-1)^s + 1 \right] 2^s \left(\frac{\Delta}{2}\right)_n^2 (\Delta)_{s+n}^2}{s! n! \left(s + \frac{d}{2}\right)_n (2\Delta + n - d + 1)_n (2\Delta + 2n + s - 1)_s (2\Delta + n + s - \frac{d}{2})_n} \end{split}$$

AGREES WITH

$$d = 4$$
 result

[DOLAN, OSBORN'00]

 $O(N^0)$ part

[FITZPATRICK, KAPLAN'11]

COMBINING THE RESULTS

 $\langle \mathcal{OOOO} \rangle_{conn}$

COMBINING THE RESULTS

 $G_{any}^{\mathcal{O}_{n,s}}$

 $G_{any}^{\mathcal{J}_s}$

 $\langle \mathcal{OOOO} \rangle_{conn}$

 $G_{any}^{\mathcal{O}_{n,s}}$

+

 $G_{14|23}^{\mathcal{J}_s}$

+

-1

"
$$\frac{1}{3}\langle \mathcal{OOOO} \rangle$$
 "

"
$$\frac{1}{3}\langle \mathcal{OOOO} \rangle$$
 " + cross terms = $\langle \mathcal{OOOO} \rangle$

"
$$\frac{1}{3}\langle \mathcal{OOOO} \rangle$$
 " + cross terms = $\langle \mathcal{OOOO} \rangle$

EXAMPLES:

$$\langle \mathcal{OOOO} \rangle = A + B + C$$

"
$$\frac{1}{3}\langle \mathcal{OOOO} \rangle$$
 " = A
" $\frac{1}{3}\langle \mathcal{OOOO} \rangle$ " = $\frac{1}{2}(A+B)$
" $\frac{1}{3}\langle \mathcal{OOOO} \rangle$ " = $A + B - C$

"
$$\frac{1}{3}\langle \mathcal{OOOO} \rangle$$
 " + cross terms = $\langle \mathcal{OOOO} \rangle$

EXAMPLES:

$$\langle \mathcal{OOOOO} \rangle = A + B + C$$

$$G^{\mathcal{O}_{n,s}}$$

$$G^{\mathcal{O}_{n,s}$$

$$G^{\mathcal{O}_{n,s}}$$

$$G^{\mathcal{O}_{n,s}}$$

$$G^{\mathcal{O}_{n,s}}$$

$$G$$

"
$$\frac{1}{3}\langle \mathcal{OOOO} \rangle$$
 " + cross terms = $\langle \mathcal{OOOO} \rangle$

EXAMPLES:

$$\langle \mathcal{OOOOO} \rangle = A + B + C$$

$$G^{\mathcal{O}_{n,s}}$$

$$(\frac{1}{3} \langle \mathcal{OOOOO} \rangle " = A$$

$$(\frac{1}{3} \langle \mathcal{OOOOO} \rangle " = A + B - C$$

TO BALANCE SINGLE TRACE CONTRIBUTIONS

 $= \quad "\frac{1}{3} \langle \mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O} \rangle "$

USE REPRESENTATION

+

 $\int d\nu \,\alpha(\nu) \,G_{h+i\nu,s}(u,v)$

Solve for $f_s(\nu)$. Expand in Taylor series at $\nu^2 = -s - 9/4$ to get $a_{n,s}$

f $_{s}(\nu)$'s Laurent series converges to $f_{s}(\nu)$

f $_{s}(\nu)$'s Laurent series converges to $f_{s}(\nu)$

The pole of $f_s(\nu) \Rightarrow G_{\Delta,s}$ with not double-trace value of (Δ, s) from double-trace conformal blocks. Contradicts to linear independence of conformal blocks.

f $_s(\nu)$'s Laurent series converges to $f_s(\nu)$

The pole of $f_s(\nu) \Rightarrow G_{\Delta,s}$ with not double-trace value of (Δ, s) from double-trace conformal blocks. Contradicts to linear independence of conformal blocks.

CONFORMAL BLOCKS WITH DIMENSIONS DIFFERENT FROM DOUBLE-TRACE VALUES IS AN ATTRIBUTE OF EXCHANGES. LOCALITY OF QUARTIC INTERACTIONS.

f $_{s}(\nu)$'s Laurent series converges to $f_{s}(\nu)$

The pole of $f_s(\nu) \Rightarrow G_{\Delta,s}$ with not double-trace value of (Δ, s) from double-trace conformal blocks. Contradicts to linear independence of conformal blocks.

CONFORMAL BLOCKS WITH DIMENSIONS DIFFERENT FROM DOUBLE-TRACE VALUES IS AN ATTRIBUTE OF EXCHANGES. LOCALITY OF QUARTIC INTERACTIONS.

$$\frac{1}{3} \langle \mathcal{OOOO} \rangle = A + B - C \quad \Rightarrow \quad \text{no poles for } f_s(\nu)$$

LOCALITY VS ∂^∞

IN FLAT SPACE:

MANDELSTAM VARIABLES

 $\mathcal{V}_4 \rightarrow \mathcal{A}(s,t,u)$

Poles in $\mathcal{A} \leftrightarrow$ exchanges
LOCALITY VS ∂^∞

IN FLAT SPACE:

MANDELSTAM VARIABLES

 $\mathcal{V}_4 \rightarrow \mathcal{A}(s,t,u)$

Poles in $\mathcal{A} \leftrightarrow$ exchanges

ABSENCE OF POLES IN THE CORRESPONDING AMPLITUDE

REFINED VERSION: THE AMPLITUDE IS AN ENTIRE FUNCTION

LOCALITY VS ∂^{∞}

IN FLAT SPACE:

MANDELSTAM VARIABLES

 $\mathcal{V}_4 \rightarrow \mathcal{A}(s,t,u)$

Poles in $\mathcal{A} \leftrightarrow$ exchanges

REFINED VERSION: THE AMPLITUDE IS AN ENTIRE FUNCTION

NON-LOCAL NON-LOCAL

LOCAL

LEAVES ROOM FOR LOCAL INFINITE DERIVATIVE INTERACTIONS

CONCLUSION

PRELIMINARY RESULTS FOR HOLOGRAPHIC QUARTIC INTERACTIONS

HS PROPAGATORS

CURRENTS IN ADS, IMPROVEMENTS

BULK AMPLITUDES FOR 4PT EXCHANGES AND CONTACT DIAGRAMS

OPE ON THE CFT SIDE

LOCALITY OF THE HOLOGRAPHIC VERTEX

CONCLUSION

PRELIMINARY RESULTS FOR HOLOGRAPHIC QUARTIC INTERACTIONS

HS PROPAGATORS

CURRENTS IN ADS, IMPROVEMENTS

BULK AMPLITUDES FOR 4PT EXCHANGES AND CONTACT DIAGRAMS

OPE ON THE CFT SIDE

LOCALITY OF THE HOLOGRAPHIC VERTEX

OUTLOOK

EXCHANGES IN A CROSSED CHANNEL, CROSSING SYMMETRY

VERTICES FOR FIELDS WITH SPIN, HIGHER VERTICES

OTHER DUALITIES. BULK DUAL OF QCD?

OTHER TECHNIQUES. MELLIN AMPLITUDES?