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Motivations

1. Test Holography and AdS/CFT beyond string theory.

The O(N) vector model: O(1/N) anomalous dimensions of the O(N)-singlet
higher-spin currents are all determined by γφ [W. Rühl - private communication ]:

J(s) ∼ φa∂{µ1
....∂µs}φ

a , a = 1, 2, .., N

∆s = s+ 1 + 4γφ
s− 2

2s− 1
+ · · · , s = 2k , k = 1, 2, .. , γφ ∼ O(1/N)

s→∞ , ∆s − s ≈ 2

(
1

2
+ γφ

)
Contrast with N = 4 SYM: 1) No ln s growth that would signal the presence
of gauge fields. 2) Hard to arise from rotating strings in AdS. (However, fast
rotating ultrashort strings (particles?) in an AdS4 black hole yield the
T -independent result [Armoni, Barbon and A.C.P. (02)])

s→∞ , ∆− s ≈ 1

4
√

2

√
λ+ · · ·
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Motivations

The conjectures

The O(N) singlet sector of the bosonic vector model is dual to the simplest
Vasiliev Theory on AdS4 [Klebanov and Polyakov (02)].

An analogous conjecture for the O(N) fermionic vector model - slightly
complicated due to parity issues - [Leigh and A. C. P. , Sezgin and Sundell (03)]

The bosonic conjecture has been tested up to 3-pt couplings. [e.g. Giombi and Yin

(09)].
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Motivations

2. Compare the bulk and boundary OPE studies: understand how the bulk
”emerges” from the boundary and vice versa.

Diagrammatic 1/N ”skeleton” expansion elucidates the OPE structure of the
boundary theories and gives interesting results.
However, extension of such techniques to the bulk is rather mysterious (see
however [X. Bekaert et. al (14)]).

Sample further questions (still impenetrable in d ≥ 3)

3. HS black-holes [S. Didenko et. al (09)] and boundary thermalization: The bosonic
model realises the Mermin-Wagner theorem: O(N) symmetry does not break for
T > 0 - parity does break for T > 0. How is this realised in terms of HSs?
4. N → 0 limit relevant to polymers?
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Motivations

Questions: global symmetries in the boundary

Vector models exhibit global and discrete symmetry breaking: the bosonic
model O(N)→ O(N − 1), the fermionic model parity breaking.

If there is holography without strings and branes, a) what is the bulk
counterpart of the global O(N) boundary symmetry and b) what is its
breaking pattern?

Answer: singletons
[R. G. Leigh and A. C. P. (12)] (see also [O. Gelfond and M. Vasiliev (13)])

At least to leading order in 1/N , the bulk HS theory can be deformed by
”eating” (i.e. integrating-in) singletons → these are pushed towards the
boundary and induce the N → N + 1 shift.

We need, however, some nontrivial bulk interaction with the HSs in order to
induce the necessary boundary terms to glue the extra field to the rest.

A. C. Petkou (AUTH) Holographic Aspects of Large-N Vector Models Lebedev Institute, Moscow 2 June 2015 6 / 29



Motivations

Questions: global symmetries in the boundary

Vector models exhibit global and discrete symmetry breaking: the bosonic
model O(N)→ O(N − 1), the fermionic model parity breaking.

If there is holography without strings and branes, a) what is the bulk
counterpart of the global O(N) boundary symmetry and b) what is its
breaking pattern?

Answer: singletons
[R. G. Leigh and A. C. P. (12)] (see also [O. Gelfond and M. Vasiliev (13)])

At least to leading order in 1/N , the bulk HS theory can be deformed by
”eating” (i.e. integrating-in) singletons → these are pushed towards the
boundary and induce the N → N + 1 shift.

We need, however, some nontrivial bulk interaction with the HSs in order to
induce the necessary boundary terms to glue the extra field to the rest.

A. C. Petkou (AUTH) Holographic Aspects of Large-N Vector Models Lebedev Institute, Moscow 2 June 2015 6 / 29



Motivations

Questions: global symmetries in the boundary

Vector models exhibit global and discrete symmetry breaking: the bosonic
model O(N)→ O(N − 1), the fermionic model parity breaking.

If there is holography without strings and branes, a) what is the bulk
counterpart of the global O(N) boundary symmetry and b) what is its
breaking pattern?

Answer: singletons
[R. G. Leigh and A. C. P. (12)] (see also [O. Gelfond and M. Vasiliev (13)])

At least to leading order in 1/N , the bulk HS theory can be deformed by
”eating” (i.e. integrating-in) singletons → these are pushed towards the
boundary and induce the N → N + 1 shift.

We need, however, some nontrivial bulk interaction with the HSs in order to
induce the necessary boundary terms to glue the extra field to the rest.

A. C. Petkou (AUTH) Holographic Aspects of Large-N Vector Models Lebedev Institute, Moscow 2 June 2015 6 / 29



Motivations

Questions: global symmetries in the boundary

Vector models exhibit global and discrete symmetry breaking: the bosonic
model O(N)→ O(N − 1), the fermionic model parity breaking.

If there is holography without strings and branes, a) what is the bulk
counterpart of the global O(N) boundary symmetry and b) what is its
breaking pattern?

Answer: singletons
[R. G. Leigh and A. C. P. (12)] (see also [O. Gelfond and M. Vasiliev (13)])

At least to leading order in 1/N , the bulk HS theory can be deformed by
”eating” (i.e. integrating-in) singletons → these are pushed towards the
boundary and induce the N → N + 1 shift.

We need, however, some nontrivial bulk interaction with the HSs in order to
induce the necessary boundary terms to glue the extra field to the rest.

A. C. Petkou (AUTH) Holographic Aspects of Large-N Vector Models Lebedev Institute, Moscow 2 June 2015 6 / 29



Motivations

Questions: global symmetries in the boundary

Vector models exhibit global and discrete symmetry breaking: the bosonic
model O(N)→ O(N − 1), the fermionic model parity breaking.

If there is holography without strings and branes, a) what is the bulk
counterpart of the global O(N) boundary symmetry and b) what is its
breaking pattern?

Answer: singletons
[R. G. Leigh and A. C. P. (12)] (see also [O. Gelfond and M. Vasiliev (13)])

At least to leading order in 1/N , the bulk HS theory can be deformed by
”eating” (i.e. integrating-in) singletons → these are pushed towards the
boundary and induce the N → N + 1 shift.

We need, however, some nontrivial bulk interaction with the HSs in order to
induce the necessary boundary terms to glue the extra field to the rest.

A. C. Petkou (AUTH) Holographic Aspects of Large-N Vector Models Lebedev Institute, Moscow 2 June 2015 6 / 29



Motivations

Questions: global symmetries in the boundary

Vector models exhibit global and discrete symmetry breaking: the bosonic
model O(N)→ O(N − 1), the fermionic model parity breaking.

If there is holography without strings and branes, a) what is the bulk
counterpart of the global O(N) boundary symmetry and b) what is its
breaking pattern?

Answer: singletons
[R. G. Leigh and A. C. P. (12)] (see also [O. Gelfond and M. Vasiliev (13)])

At least to leading order in 1/N , the bulk HS theory can be deformed by
”eating” (i.e. integrating-in) singletons → these are pushed towards the
boundary and induce the N → N + 1 shift.

We need, however, some nontrivial bulk interaction with the HSs in order to
induce the necessary boundary terms to glue the extra field to the rest.

A. C. Petkou (AUTH) Holographic Aspects of Large-N Vector Models Lebedev Institute, Moscow 2 June 2015 6 / 29



Outline

1 Motivations

2 The bosonic O(N) vector model as a CFT
Setup
The free field theory
The skeleton graphs

3 Summary and outlook

A. C. Petkou (AUTH) Holographic Aspects of Large-N Vector Models Lebedev Institute, Moscow 2 June 2015 7 / 29



The bosonic O(N) vector model as a CFT

The relevant 2- and 3-pt functions (xij = xi − xj)

〈φa(x1)φb(x2)〉 =
1

x
2∆φ

12

δab , 〈O(x1)O(x2)〉 =
1

x2∆
12

(1)

〈φa(x1)φb(x2)O(x3)〉 = gφφO
1

(x2
12)∆φ− 1

2 ∆(x2
13x

2
23)

1
2 ∆
δab (2)

The question: can conformal invariance alone determine the values of ∆φ,∆
and gφφO?

Older answer (”old bootstrap”): use an improved Dyson-Schwinger expansion
for the above 2- and 3-pt functions that leads to algebraic equations for the
critical parameters. [The St. Petersburg group (80-82)] , e.g. ∆φ is known up to
O(1/N3).
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Aspects of the OPE in O(N) vector models

New bootstrap: focus on 4-pt functions and use the analytic properties of the
conformal OPE (Newest bootstrap: use algorithmic techniques and
guesswork to obtain numerical results [S. Rychkov et. al. (10)])

〈φa(x1)φb(x2)φc(x3)φd(x4)〉 ≡ Φabcd(x1, x2, x3, x4)

= δabδcdΦS(x1, x2, x3, x4)

+ E [ab,cd]ΦA(x1, x2, x3, x4)

+ T (ab,cd)Φst(x1, x2, x3, x4)

〈φa(x1)φb(x2)O(x3)O(x4)〉 ≡ δabΦφO(x1, x2, x3, x4)

〈O(x1)O(x2)O(x3)O(x4)〉 ≡ ΦO(x1, x2, x3, x4)

These will be functions of v and Y related to the usual conformal ratios as

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

12x
2
34

x2
14x

2
23

, Y = 1− v

u

with v, Y → 0 as x2
12, x

2
34 → 0.
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Aspects of the OPE in O(N) vector models

We would need the following OPE

φa(x1)φb(x2) =
∑
∆s

δab

(x2
12)∆φ− 1

2 ∆s

[
1 +

gφφOs
COs

[Os(x2)]

]
,

+
∑
∆′s

E [ab,cd]

(x2
12)∆φ− 1

2 ∆′s

g
φφO[cd]

s

CO[cd]
s

[O[cd]
s (x2)]

+
∑
∆′′s

T (ab,cd)

(x2
12)∆φ− 1

2 ∆′′s

g
φφO(cd)

s

CO(cd)
s

[O(cd)
s (x2)] ,

The [Os]’s represent the full contributions (i.e. including descendants).
The COs ’s are the 2-pt function normalisation constants and the gφφOs ’s are
the corresponding 3-pt function couplings. We normalized to one the 2-pt
function of the φa’s.
The above OPE represents a converging series in the limit x12 → 0 limit.
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Aspects of the OPE in O(N) vector models

We would also need

φa(x1)O(x2) =
1

(x2
12)

∆φ+∆

2

[
gφφO

(x2
12)−

∆φ
2

[φa(x2)] +
gφOF
CF

[F a(x2)]

(x2
12)−

∆F
2

+ ..

]

O(x1)O(x2) =
1

x2∆
12

[
CO +

gO
CO

[O(x2)]

(x2
12)−

∆
2

+
gOOT
CT

Cµν [Tµν(x2)]

(x2
12)−

d
2

+ ..

]
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Aspects of the OPE in O(N) vector models

Inserting the OPEs into the 4-pt functions we obtain formulae like

Φ(v, Y ) =
∑
∆s

1

(x2
12x

2
34)∆φ

g2
φφOs
COs

H∆s(v, Y )

with H∆s
(v, Y ) the conformal partial wave (CPW) representing the

contribution of the operator Os and all its descendants into the 4-pt function.

The CPW’s are given is terms of a double series of the form

H∆s
(v, Y ) = v

1
2 (∆s−s)

∞∑
n,m=0

Anmv
nY m

When the operators are conserved spin-s currents with ∆s = d− 2 + s the
leading singular term has the form

H∆s
(v, Y ) = A0sv

1
2d−1Y s[1 +O(v)] · · ·

The above behaviour can be used to detect the presence of higher-spin
conserved currents in a 4-pt function.
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Aspects of the OPE in O(N) vector models

Assuming the presence of one only scalar operator O
with dimension ∆ < d in the OPE, we have for the first few most singular terms

ΦS(v, Y ) =
1

(x2
12x

2
34)∆φ

[
1 +

g2
φφO

CO
v

∆
2 2F1(

∆

2
,

∆

2
; ∆;Y ) +

g2
φφT

4CT
v
d
2−1Y 2 + .

]

We need to match this with an explicit calculation. The obvious one is free
field theory

ΦS(v, Y ) =
1

(x2
12x

2
34)∆φ

[
1 + v∆φ

(
1 +

1

(1− Y )∆φ

)]
We first obtain that

∆φ =
d

2
− 1 , ∆ = 2∆φ = d− 2 ,
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Aspects of the OPE in O(N) vector models

Hence we may write

O(x) =
1√
2N

φa(x)φa(x) , ⇒ CO = 1

Next we find

g2
φφO =

2

N

A conformal Ward identity fixes

gφφT =
d∆φ

(d− 1)Sd

and finally we find

CT = N
d

(d− 1)S2
d
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Aspects of the OPE in O(N) vector models

The simple expression

1

N
v
d
2−1

(
1 +

1

(1− Y )
d
2−1

)
packages efficiently the contributions of an infinite number of even-spin HS
currents, the normalization of their 2-pt functions and their 3-pt function
couplings with the φ’s. The latter are determined by HS Ward identities,
hence the above expression ”knows” about HS symmetry.

It is challenging to reproduce this result holographically, not least because the
usual Witten graphs give zero for bulk singletons - see however [R. G. Leigh et.

al. (14)].
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Aspects of the OPE in O(N) vector models

Going on, we find the OPE of ΦA as

ΦA(v, Y ) =
1

(x2
12x

2
34)∆φ

g2
φφJ

CJ
v
d
2−1Y [1 + · · · ]

that gives the leading contribution of a spin-1 conserved current J .

We need to compare this with

ΦA(v, Y ) =
1

(x2
12x

2
34)∆φ

v∆φ

(
1− 1

(1− Y )∆φ

)
=

1

(x2
12x

2
34)∆φ

∆φv
∆φY [1 + · · · ]

Using the Ward identity for gφφJ we obtain

gφφJ =
1

Sd
, CJ =

2

(d− 2)S2
d
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Aspects of the OPE in O(N) vector models

For ΦφO we have the free field theory result.

ΦφO(v, Y ) =
1

x
2∆φ

12 x2∆
34

[
1 +

2

N
v∆φ

(
1 +

1

(1− Y )∆φ

)]

The ”direct channel” OPE x2
12 , x

2
34 ,⇒ 0 gives the expected contribution of

the infinite series of even-spin HSs.

More interesting are the ”crossed channels” i.e. we consider here x2
13 , x

2
24 ⇒

when the OPE gives

ΦφO(v, Y ) =
1

(x2
13x

2
24)

∆φ+∆

2

[
g2
φφO

( v
u

)∆φ
2

2F1

(
∆

2
,

∆

2
; ∆; 1− v

)

+
g2
φOF

CF

( v
u

)∆F
2

2F1

(
∆F

2
,

∆F

2
; ∆F ; 1− v

)
+ ..

]

where (v/u) , (1− v) → 0.
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Aspects of the OPE in O(N) vector models

The free field theory result is expanded as

ΦφO(v, Y ) =
1

(x2
13x

2
24)

∆φ+∆

2

[
2

N

( v
u

)∆φ
2

+ (1 +
2

N
)
( v
u

) 3∆φ
2

+ ...

]

This is compatible with the presence of an operator of the form

F a(x) =
1√

4 + 2N
φa(x)φ2(x) , CF = 1 , g2

φOF = 1 +
2

N

Important to keep that the elementary field φa does appear in the OPE, and
hence in the spectrum.
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Aspects of the OPE in O(N) vector models

Finally we consider ΦO whose free field expression is

ΦO(v, Y ) =
1

(x2
12x

2
34)∆

[
1 + v∆

(
1 +

1

(1− Y )∆

)

+
4

N

{
v∆φ

(
1 +

1

(1− Y )∆φ

)
+ v2∆φ

1

(1− Y )∆φ

}]

We notice he contribution of the even-spin HS currents.

The disconnected graphs give the contribution of the form

v2∆φ = v
1
2 ∆s−s

For s = 0 this corresponds to a scalar with ∆ = 4∆φ i.e. (φ2)2.

For s 6= 0 these correspond to twist t = 2 HS operators with
∆s = d− 2 + s+ t. Notice that all higher-twist operators have been
cancelled.
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Aspects of the OPE in O(N) vector models

To deform the free theory we use an expansion in”skeleton graphs” built
using just three ingredients: the (unit normalised) 2-pt functions of the
operators φa(x), O(x) (with dimension ∆̃) and the 3-pt function

〈φa(x1)φb(x2)O(x3)〉 = g∗
1

(x2
12)∆φ− ∆̃

2 (x2
13x

2
24)

∆̃
2

δab .

The parameters ∆̃ and g∗, as well as all other parameters (i.e. coupling and
scaling dimensions) will be determined by studying the consistency of the
skeleton expansion with the OPE.
We also need to ”amputate” using the inverse 2-pt functions

δabΓ(x1, x2, x) ≡
∫
ddx3〈φa(x1)φb(x2)O(x3)〉〈O(x3)O(x)〉−1

= g∗
f(∆φ, ∆̃, d)

(x2
12)∆φ− ∆̃

2 (x2
13x

2
24)

d−∆̃
2

δab

with x the internal point of a graph, and f(∆φ, ∆̃, d) are ratio’s of
Γ-functions.
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Aspects of the OPE in O(N) vector models

This construction is an important simplification compared to the usual 1/N
diagrammatic expansion of the vector model: the full vertices and 2-pt
functions are used.

The skeleton expansion for ΦS will involve tree-exchange graphs with a single
O(x) internal line, ladder graphs with internal O(x) and φa(x) lines etc...

The leading exchange graph in the direct channel x2
12, x

2
34 ⇒ 0 yields the

remarkable formula

g2
∗F (∆φ, ∆̃, d)

1

(x2
12x

2
34)∆φ

[
H∆̃(v, Y ) + C(d, ∆̃)Hd−∆̃(v, Y )

]
C(d, ∆̃) =

Γ(∆̃)Γ(∆̃− d
2 )Γ4(d2 −

1
2∆̃)

Γ(d− ∆̃)Γ(d2 − ∆̃)Γ4(d2 )
(3)

This is remarkable since it corresponds to the CPWs of both the operator
O(x) but also its shadow operator with dimension d− ∆̃.

It can be shown that the presence of the shadow term is necessary
for the graph to be analytic under a crossing transformation i.e. x2 ↔ x3.
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Aspects of the OPE in O(N) vector models

A given skeleton graph with 2n vertices has the shadow symmetry property

G(v, Y ; ∆) = [C(d, d−∆)]nG(v, Y ; d−∆)

It is believed that the above property is related to the analyticity of the graph
under crossing. Then, the full crossing symmetric 4-pt function can be
obtained by adding to the direct channel the crossed terms.

The crossed, box (and possibly all higher order) evaluate to the generic form

G(x1, x3, x2, x4) =
1

(x2
12x

2
34)∆φ

v∆φ

∞∑
n,m=0

vnY m

n!m!
[−anm ln v + bnm]
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Aspects of the OPE in O(N) vector models

Examples:

Modifying the free result for ΦS(v, Y ) by the O-exchange graph would imply
the presence of three scalar operators with dimensions < d! To avoid that,
we choose to cancel the free operator with ∆ = 2∆φ with one of the two

terms in the exchange graph. In fact, C(d, ∆̃) < 0 for 2 < d < 6 and ∆̃ < d.
This way we fix g2

∗ ∼ O(1/N) and also d− ∆̃ = 2∆φ ⇒ ∆̃ = 2.

Modifying ΦA(v, Y ) we find

ΦA(v, Y ) = ∆φv
∆φY [1 + ..] + g2

∗v
∆φY [−A00 ln v +B00 + ..]

=
g2
J

CJ
v
d
2−1Y [1 + ..]

We need to kill the ln v terms in the first line, which is done if we assume that

∆φ =
d

2
− 1 +

1

N
γφ , ⇒ γφ =

2Γ(d− 2)

Γ(d2 + 1)Γ(d2 )Γ(1− d
2 )Γ(d2 − 2)
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Aspects of the OPE in O(N) vector models

For ΦφO(v, Y ) we need exchange graphs involving the elementary scalar φa.
These give both the CPW of φa but also of its shadow with ∆ = 5/2. One
would also think that both contributions are O(1/N). Quite remarkably, the
latter contribution is singular, needs to be regularised and eventually gives
rise to a O(1) term in the 4-pt function.

C(d,∆φ)→ −
N(d2 − 2)2

γφ
d
2 (d2 − 1)

= − 1

g2
φφO

⇒ g2
φφOC(d,∆φ) = −1 +O(1/N)

This is necessary to correctly match with the OPE and make sure that the
∆ = 5/2 operator does not appear!

This should be the boundary counterpart of the impossibility to quantize bulk
singletons with standard Dirichlet boundary conditions: only the alternative
quantization appears to give a positive measure.
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Aspects of the OPE in O(N) vector models

The issue with AdS graphs:

A scalar field exchange graph in AdS in the direct channel gives

1

(x2
12x

2
34)∆φ

[
H∆(v, Y ) +

∞∑
n,m=0

vnY m

n!m!
[−anm ln v + bnm]

]

namely, the shadow contribution is missing.

Nevertheless, one can show [L. Hoffmann, W. Ruhl and A. C. P. (00)] that such a
graph is still analytic under a crossing transformation. This is due to some
highly non-trivial Kummer-like relationships for 3F2 functions!

Also notice that there are no box and papillon graphs in the AdS description
of ΦO. Hence, it is necessary to consider the bulk vertices of all HS gauge
fields. This was not necessary in the field theory description, hence the
single φφO vertex was sufficient.
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Summary and outlook

OPE techniques combines with the confrormal bootstrap are currently the
only known approach to study CFTs that include higher-spin currents. There
are technical issues but they are not unsurmountable.

The above approach has been used [A. C. P. (96)] in a fermionic model. It can
be used for Chern-Simons and CPN−1 models.

Our approach is currently the only known method to calculate the 1/N
corrections to the anomalous dimensions and central charges of all HS
currents. Up to now this has been done only in a few cases.

It is interesting to study further the connection between shadow symmetry
and analyticity.
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Summary and outlook

It is a formidable task to compare boundary skeleton expansion and the bulk
Witten graphs, although they arguably describe the same theory.
Hint:
Boundary skeleton graphs do not have HS exchanges: I can built a HS theory
using a single scalar vertex. But they have shadow-symmetry properties, and
this is the part ”speaking” to HS coming from the free theory.
Bulk graphs do not have shadow-symmetry: but to built the theory one
would need all HS exchanges. Namely, they include the ”free part” that was
actually ”cancelled” by the shadow term in the skeleton graphs.
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