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Summary 

•  The 4D Vasiliev equations  
         - Oscillator algebras  
            - Full equations (bosonic) 

•  Solving the equations  
           - Gauge function method 
                - Building blocks of exact solutions 

•  Exact solutions   
         - Local data of exact solutions: continuous and discrete “moduli” 
            -  Zoology of known exact solutions 

•  Conclusions and Outlook  
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Oscillator algebra 
§  Commuting variables   

§  Star-product:  

§  π automorphism generated by the inner kleinian operator κ: 

§  Fields live on correspondence space, locally X x Y x Z :	
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The Vasiliev Equations 

•  “Twisted adjoint” 0-form  (contains scalar, Weyl, HS Weyl and derivatives) 

§  Gauge field  ∈  Adj(hs(3,2))   (master  1-form connection):            

(every spin-s sector contains all one-form connections that are necessary 
             for a frame-like formulation of HS dynamics (finitely many) ) 

§  Weyl 0-form  : 

                    N.B.: spin-s sector à infinite-dimensional 
(upon constraints, all on-shell-nontrivial covariant derivatives of the physical fields,  
                            i.e., all the local dof encoded in the 0-form at a point) 

Generators of hs(3,2):  

Bilinears in osc. à so(3,2):  
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The Vasiliev Equations 

Local sym:   

§  Full eqs:  

(Vasiliev ’90) 

§  In components:  

 [Evolution along Z determines Z-contractions in terms of original dof.   
  Solution of Z-eqs. yields  consistent nonlinear corrections  as an expansion in Φ]  
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Exact solutions in HSGRA 

§  Crucial to look into the non-perturbative sector of the theory, may shed some light on  
peculiarities of HS physics and prompts to study global issues in HS gravity (boundary  
conditions, asymptotic charges, global dof in Z…).  

§  The Z-extended unfolded system encodes physical field equations that are  highly  
non-local: at any order in the coupling constant à infinite derivative expansion. 

  à  radical departure from the familiar setups of lower-spin field theories, quantum  
       effective theories or even SUGRA + stringy higher-derivative corrections.  

§  How to physically interpret the solutions?  A few gauge-invariant observables 
     are known, but their physical meaning is not always clear.  
     Presently lacking a complete understanding, we shall classify some solutions according  
     to the deformation parameters that activate them. Some of them are manifestly related 
     to observables, for some other it is hard to say.  
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Exact solutions: gauge function method 

§   Can solve locally all equations with at least one spacetime component via some  
gauge function: 

§  X x Y x Z-space 
       eqns:  

§  Y x Z-space 
       eqns:  

§  The remaining equations can be solved by various methods.  
      Then “dress” all fields with  x-dependence by performing star-products with the 

 gauge function. 
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Gauge fields sector 

§  But, in general, expansion coefficients in Aµ are not Lorentz tensors!    

§  The proper Lorentz generator, at the full level, is 

     under which 

  

^ 

§  We want to interpret the coefficients of the master fields as space-time tensors à 
      it should be possible to extract Lorentz tensors (and a Lorentz connection) out of 
      the gauge fields generating function. 

2.2 The Space-Time Field Equations

In order to obtain the physical field equations on generally covariant form, one first
has to Lorentz covariantise (2.23). To this end, one first identifies the full Lorentz
generators acting on the hatted master fields as follows

M̂αβ = M̂ (0)
αβ +

1

2
{Ŝα, Ŝβ}∗ , (2.24)

where M̂ (0)
αβ = yαyβ − zαzβ, and

Ŝα = zα − 2iÂα . (2.25)

One can show that [2]

δLΦ̂ ≡ −[ε̂L, Φ̂]π = −[ε̂0, Φ̂]$ , (2.26)

δLÂα ≡ D̂αε̂L = −[ε̂0, Âα]∗ + Λα
βÂβ , (2.27)

δLÂµ ≡ D̂µε̂L = −[ε̂0, Âµ]$ +
(

1

4i
∂µΛαβM̂αβ − h.c.

)
, (2.28)

where ε̂L = 1
4i

Λαβ(x)M̂αβ−(h.c.) are the full parameters, and ε̂0 = 1
4i

ΛαβM̂ (0)
αβ −(h.c.)

are the parameters of canonical Lorentz transformations of the Y and Z oscilla-
tors. The canonically transforming component fields are thus obtained by Y and
Z-expansion of Âα, Φ̂ and Âµ − ( 1

4i
ωµ

αβM̂αβ − h.c.) where ωµ
αβ is the Lorentz con-

nection with δLωµ
αβ = ∂µΛαβ + Λαγωµγβ + Λβγωµγα (related conventions are given

in Appendix A). Hence, introducing

ωµ =
1

4i
ωµ

αβMαβ − h.c. , Mαβ = yαyβ , (2.29)

K̂µ =
1

4i
ωµ

αβ(M̂αβ − Mαβ) − h.c. , (2.30)

and using the gauge condition (2.20) to simplify Kµ = K̂µ|Z=0, the Lorentz covariant
decomposition of the master-gauge field Aµ reads

Aµ = eµ + ωµ + Wµ + Kµ , (2.31)

Kµ = iωµ
αβ (Âα & Âβ)

∣∣∣
Z=0

− h.c. (2.32)

where eµ is the vielbein1

1The vielbein here is given in the higher-spin frame, where the torsion is non-vanishing. A
discussion of the Einstein frames is given in [25].
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§  Complicated, field-dependent transformation, but the field-redefinition  

only contain Lorentz tensors!  
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“Moduli” space 

§  What are the quantities that build the space of solutions?    

1.  Local dof in  Φ’(Y) :=  Φ’(Y, Z)|Z=0 .     
 
Initial condition of Z-evolution. All on-shell nontrivial derivatives of  physical  

        fields at a spacetime point. The gauge function spreads  this datum  
        over space-time (more precisely, over a chart). 

The functional form of Φ’(Y) matters, since, for any chosen gauge function, it contributes to 
the space-time behaviour of the fields, different asymptotics, etc. . 
Moreover (and not disconnectedly) specific functions  Φ’(Y) may have a peculiar behaviour 
under ★-product (span some subalgebra, diverge, etc.) à different SECTORS of HSGRA. 

^ 

§  Solutions constructed assembling data from  Φ’, S’, L.    In general 
one should also consider transition functions TI

J  gluing together locally-defined 
 field configurations. 
  

^ ^ ^ 
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“Moduli” space 

2.  Monodromies and projectors in V’α(0) = V’α|Φ’=0 .                                                               

          It is particularly interesting that Z-space connection can be flat but nontrivial.  
          New vacua?  Global dof in Z?  

3.  Choice of gauge function L : boundary dof may be contained in L | ∂C   
(boundary values in (x,Y,Z) may affect observables) 

 
 
4.  Windings in transition functions   TI

J  gluing together locally-defined field  
configurations 

^ ^ 

^ ^ 

§  N.B.:   AdS4 vacuum solution in the gauge function approach:  
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I. Weyl 0-form moduli and “sectors” of HSGRA 

(Sezgin-Sundell ’05) 

§  Weyl 0-form moduli have so far been explored in the following sectors: 
 

a.   Twistor space polynomials and plane waves  (                                   ) 

The only Weyl 0-form initial datum dressed into a full solution is the trivial  
polynomial                                          à  so(3,1)-invariant solution   
 
 
 
à gives rise to a scalar profile on a rescaled AdS metric 

[Possible interesting dual interpretation, but complicated analysis at finite ν  
  (C.I., J. Raeymaekers, in progress)]  
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I. Weyl 0-form moduli and “sectors” of HSGRA 

b.   States with compact so(3,2)-weights 

 Φ’  =   enveloping-algebra realization  of states with definite eigenvalues  
of E and spatial rotations Mrs , that are organized in Harish-Chandra modules  
M under the action of so(3,2).  
 
 
 
It can be shown that they form indecomposable modules, comprising the AdS  
massless (anti-)particle (highest-) lowest-weight modules D(e0, s0)  PLUS 
a wedge W of states of intermediate E-eigenvalues (corresponding to runaway  
modes of the linearized theory).  More precisely, 
 
 
The so(3,2) action can take from W to the particle subspace D, but not back 
out à the entire M can be generated from some reference state(s) in  W . 
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I. Weyl 0-form moduli and “sectors” of HSGRA 

⇒ 

(C.I., P. Sundell ‘08) 

§  For example, the non-polynomial element P1 : = 4 e-4E   has the properties: 

and from  the point-of-view of the two-sided,   
twisted-adjoint action K★ P1 – P1★ π(K) 

§  The so(3,2) action on P1 reconstructs the projectors on all other D(1,0) modes à the 
hs(3,2) action gives the modes of all spin-s AdS massless particles. 

§  Interestingly, one can generate all (anti-)particle modules via twisted adjoint hs(3,2)-
action from the static runaway mode(s) φ0;(0) = sinh(4E)/4E   (and φ0;(1)) of the free 
scalar field . 

§  It is unclear whether these static elements can be dressed up to full solutions [partly 
because they are not singleton composites]. 
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I. Weyl 0-form moduli and “sectors” of HSGRA 

⇒ (C.I., P. Sundell, to appear) 

§  However, there exists another sector containing static states that, by construction, have 
much simpler non-linear completion.  

§  Its elements can be obtained from particle states by ★-multiplication with κy , forming 
the space S = D ★ κy   
à “twisted projectors” Pn = P n ★ κy,  satisfying the generalized projector algebra 

§   κy flips the sign of energy and thus generates states that lie outside the particle 
modules , static, with same eigenvalues of static runaway modes but “dual” spacetime 
behaviour  ( r  à 1/r ) à    soliton-like solutions. 

§   In fact, such states provide the local data for HS generalizations of Schwarzschild 
black holes ! 
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Weyl 0-form: initial data for HS black holes 

§  Φ’(Y)  expanded in twisted projectors:  

§  This expansion enforces the Kerr-Schild property in gauge fields: the latter are  
reconstructed from curvatures in powers of  (Φ’ ★ κy)★n = P★n = P.   

§  Solutions inherit the symmetries of the projectors 

 For a Schwarzschild bh, residual isometry à  so(2)E ⊕ so(3)Mrs  .  Projectors are ƒ(E) : 

§  Indeed, reinstating the x-dependence:  

    a tower of type-D Weyl tensors of all spins: 

(Didenko-Vasiliev, ‘09, C.I.-P. Sundell, ‘11) 
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Weyl 0-form: initial data for AdS massless scalar 

§  Φ’(Y) expanded on projectors:  

§  Weyl zero-form only contains a scalar (modes of an AdS massless scalar): 

§  Differently from bhs,  one does not expect a free scalar to solve the full equations. 
However, their completion to full solutions is precisely given by the bh sector! 

(C.I., P. Sundell, to appear) 
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HS black-holes as a “backreaction” 

§  Indeed, the nonlinear corrections naturally activate the bh sector, since  

§  As a consequence, the deformed oscillators Sα (that give rise to nonlinear corrections  
to the gauge fields) receive contributions from both sectors à bhs arise in this sense as  
a backreaction, from nonlinear corrections induced by a massless scalar. 
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Technical caveat 

§  Working with non-polynomial functions of the oscillators brings about technical  
subtleties, related to the fact that ★-multiplication of them may result in divergencies. 
 

§  This may be remedied by sticking to a specific regular presentation, leading to 
 well-defined ⋆-product compositions (being finite as well as compatible with  
associativity) for all the functions within a given sector.  
 

§    So mixing different sectors of Weyl zero-form moduli also raises the interesting  
question of whether or not there exists a common regular presentation, one that leads  
to regular ⋆-products for solutions of both sectors. 
 

§  It turns out that the integral presentation indeed works as such a common regular  
presentation for both the bh and the massless particle sector. 
 

§   Subtlety with invariants, Str(Pn★κy) =  Pn★κy|Y=0 = ∞ .  However, it is possible to  
regularize it by using the integral presentation to the unique possible finite value à 0. 
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Cylindrically-symmetric type-D solutions 

§  Possible to construct projectors Pn (K) with any of the generators  K ={ E, J, iB, iP  } 

§  Same steps yield     

     
  è   Solutions with so(2,1)h(K) ⊕ so(2)K  symmetry  . 

§   In particular, for  K = J ,    

       Again a ground state of a 2D Fock-space (a non-compact ultra-short irrep,  
       singleton-like but with roles of E and J exchanged, |E| < |J| instead of |E| > |J|). 
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II. Z-space monodromies and S-moduli 

§  Projectors in Z-space connection à flat but non-trivial!  More complicated vacua?  

Ø  Can also dress up non-vacuum solutions (like windings in String Theory…). Both 
bhs and the scalar-instanton can be decorated with these discrete S-moduli. 

Ø  Different choices for the Fock-space where the projectors act lead to different  
      global symmetries.  

(C.I.-Sezgin-Sundell ’07) 

§  The structure of the vacuum  Φ = 0 may be richer than it seems at first sight.  
Indeed, the deformed oscillator equation 
 
 
has the structure of  X2 = 1. If X is valued in a purely commutative algebra à X = ±1. 
However, if it is vaued in a non-commutative algebra, there are more interesting  
possibilities: 
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Φ-moduli and S-moduli of so(3,1)-invariant solutions 

Physical fields: 
1)  θk = 0 ,    ∀k 
•  0-form: only scalar field 
•  gauge fields: only rescaled AdS metric 

2) ν = 0, (θk -θk+1)² = 1  
•  gauge fields:  degenerate metric 

§  Local data for full so(3,1)-invariant solution: (C.I., E.Sezgin, P. Sundell, ‘07) 
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Conclusions & Outlook 

•   A relatively vast realm of exact solutions of 4D Vasiliev’s equations has been found, by 
various methods, and they are promtping us to better understand the peculiarities of HS 
theories, both technical and conceptual.  

•   How to physically characterize the solutions? Important to better understand and evaluate  
    various HS invariants. Behaviour of certain observables on the solutions may probe  
    properties of the theory (e.g., existence of multi-body solutions?) 

•   Important related issues concerning functional classes of twistor-space elements,  
   and related questions of the admissibility of gauge parameters, regularity under star-product, 
   regularity of observables,…      

•   How to extract the most relevant physical data (e.g., asymptotic charges, thermodynamics,  
    phase transitions,…) ? 


