Symmetries of $4 d$ higher-spin current interactions

O.A.Gelfond
O.G., M.Vasiliev (to appear)

ISR and Lebedev Institute of RAS, Moscow

Higher Spin Theory and Holography-2
Lebedev Institute, Moscow, June 4, 2015

Plan

I Introduction
II Unfolded dynamics
III $\quad A d S_{4}$ conserved currents
IV Current deformation in $A d S_{4}$
V Conformal invariance of the deformation
VI Inconsistency of the $\mathfrak{u}(2,2)$-extension
VII Conclusion

Introduction

Infinite towers of free massless fields in the $4 d$ HS gauge theory
exhibit $\mathfrak{s p}(8) \supset \operatorname{su}(2,2)$.
C. Fronsdal (1986)

Manifestly $\mathfrak{s p}(8)$ symmetric geometric realization of field equations
of massless fields of all spins was actively studied I. Bandos and J. Lukier-
ski, (1999) ; I. Bandos, J. Lukierski and D. Sorokin, (2000); M.A. Vasiliev, (2001), (2002), (2008)
M. Plyushchay, D. Sorokin and M. Tsulaia, (2003); V. E. Didenko and M. A. Vasiliev, (2004);
S. Fedoruk and J. Lukierski, (2013); I. Florakis, D. Sorokin and M. Tsulaia, (2014)...

Attempts to extend the formalism to HS interactions I. Bandos, x . Bekaert
J. A. de Azcarraga, D. Sorokin and M. Tsulaia, (2005)

Full nonlinear system of HS equations is not manifestly $\mathfrak{s p (8)}$ symmetric. HS interactions are shown to necessarily break $\mathfrak{s p}(8)$ down $s \mathfrak{u}(2,2)$.

Unfolded description of current HS interactions can be understood as a deformation of the two independent $4 d$ linear systems for rank-one fields and rank-two currents . Each of these systems is $\mathfrak{s p}(8)$ symmetric, but $\mathfrak{s p}(8)$ is not preserved by the deformation.

Unfolded dynamics

Unfolded dynamics controls symmetries in a system
Unfolded formulation of a linear or nonlinear system of partial differential equations and/or constraints in a d-dimensional
manifold $M^{d}\left(x^{\underline{n}}\right)(\underline{n}=0,1, \ldots d-1)$

$$
\mathrm{d} W^{\Phi}(x)=G^{\Phi}(W(x)), \quad \mathrm{d}=d x^{\underline{n}} \frac{\partial}{\partial x^{\underline{n}}}
$$

$W^{\Phi}(x)$: set of degree p_{Φ}-differential forms.

$$
G^{\Phi}(W)=\sum f^{\Phi} \Omega_{1} \ldots \Omega_{n} W^{\Omega_{1}} \wedge \ldots \wedge W^{\Omega_{n}}
$$

$f^{\Phi}{ }_{\Omega_{1} \ldots \Omega_{n}}$ - structure coefficients.
Generalized Jacobi identity $G^{\Omega}(W) \wedge \frac{\partial G^{\Phi}(W)}{\partial W^{\Omega}}=0$
Gauge transformation $\delta W^{\Phi}(x)=\mathrm{d} \varepsilon^{\Phi}(x)+\varepsilon^{\Omega}(x) \frac{\partial G^{\Phi}(W(x))}{\partial W^{\Omega}(x)}$
Parameter $\varepsilon^{\Phi}(x)$ is a ($p_{\Phi}-1$)-form

Vacuum

w^{α} : only one-forms \Rightarrow Unfolded equations $=$ Flatness condition

$$
\mathrm{d} w^{\alpha}+\frac{1}{2} f_{\beta \gamma}^{\alpha} w^{\beta} \wedge w^{\gamma}=0
$$

General Jacobi identity $=$ Jacobi identity $\Rightarrow f_{\beta \gamma}^{\alpha}$ defines Lie algebra \mathfrak{g}. Gauge transformation

$$
\delta w^{\alpha}(x)=D \varepsilon^{\alpha}(x):=\mathrm{d} \varepsilon^{\alpha}(x)+f_{\beta \gamma}^{\alpha} w^{\beta}(x) \varepsilon^{\gamma}(x)
$$

A flat connection $w(x)$ is invariant under the gauge transformation with the covariantly constant parameters

$$
D \varepsilon^{\alpha}(x)=0
$$

$\varepsilon^{\alpha}(x)$ can be reconstructed in terms of $\varepsilon^{\alpha}\left(x_{0}\right)$ at any given point x_{0} $\varepsilon^{\alpha}\left(x_{0}\right)$ are the parameters of the global symmetry \mathfrak{g}.
$w^{\alpha_{-}}$vacuum flat connection of the Lie algebra \mathfrak{g}.
Background geometry is coordinate independent.

Linearized unfolded equations

In the perturbative analysis, w^{α} is assumed to be of the zeroth order. Differential forms $W^{\Phi}=w^{\Phi}+\omega^{\Phi}$ are small perturbations around w.

If $\omega^{i}(x)$ have a given degree $p_{i} \Rightarrow G^{i}=-w^{\alpha}\left(T_{\alpha}\right)^{i}{ }_{j} \wedge \omega^{j}$.
General Jacobi identities $\Rightarrow\left(T_{\alpha}\right)^{i}{ }_{j}$ form a representation T of \mathfrak{g}
in the space V where $\omega^{i}(x)$ are valued.
Linearized unfolded equation= Covariant constancy condition

$$
D \omega^{i}:=\mathrm{d} \omega^{i}+w^{\alpha}\left(T_{\alpha}\right)^{i}{ }_{j} \wedge \omega^{j}=0
$$

D is a covariant derivative in the \mathfrak{g}-module V.
Once the vacuum connection is fixed, this equation is invariant under the global symmetry \mathfrak{g} with the covariantly constant parameters

$$
\delta \omega^{i}(x)=-\varepsilon^{\alpha}(x)\left(T_{\alpha}\right)^{i}{ }_{j} \omega^{j}(x) .
$$

\mathfrak{g}-invariant linear system of partial differential equations
is reformulated in terms of \mathfrak{g}-modules
$\mathfrak{s p}(4, \mathbb{R})$ connection $w^{A B}=w^{B A}$ satisfies $\mathfrak{s p}(4, \mathbb{R})$ zero curvature conditions

$$
\begin{gathered}
R^{A B}=0, \quad R^{A B}=d w^{A B}+w^{A C} \wedge w_{C}{ }^{B} \\
A_{B}=A^{A} \mathrm{C}_{A B}, \quad A^{A}=\mathrm{C}^{A B} A_{B}, \quad \mathrm{C}_{A C} \mathrm{C}^{B C}=\delta_{A}^{B},
\end{gathered}
$$

$C_{A B}=-C_{B A}$: invariant form.
Two-component spinor notations
$A d S_{4}$ dynamics is described by the Lorentz connection $\omega^{\alpha \beta}, \bar{\omega}^{\alpha^{\prime} \beta^{\prime}}$ and vierbein $e^{\alpha \alpha^{\prime}}$
$A d S_{4}$: space with matrix coordinates $x^{\alpha \alpha^{\prime}}=x^{\underline{n}} \sigma_{\underline{n}}^{\alpha \beta^{\prime}}$
and auxiliary commuting spinor variables y^{α} and $\bar{y}^{\alpha^{\prime}}$
$\sigma_{\underline{n}}^{\alpha \beta^{\prime}}$ Hermitian 2×2 matrices $, \quad \underline{n}=0,1,2,3, \quad \alpha, \beta=1,2$ and $\alpha^{\prime}, \beta^{\prime}=1,2$
Unfolded equations of massless fields in $A d S_{4}$
M.Vasiliev (1989)

$$
\begin{aligned}
& D^{a d} \omega(y, \bar{y} \mid x)=e_{\alpha}{ }^{\alpha^{\prime}} \wedge e^{\alpha \beta^{\prime}} \bar{\partial}_{\beta^{\prime}} \bar{\partial}_{\alpha^{\prime}} \bar{C}(0, \bar{y} \mid x)+e_{\alpha^{\prime}}^{\alpha} \wedge e^{\beta \alpha^{\prime}} \partial_{\beta} \partial_{\alpha} C(y, 0 \mid x) \\
& D^{t w} C(y, \bar{y} \mid x)=0
\end{aligned}
$$

$\omega(y, \bar{y} \mid x) 1$-forms ,
$C(y, \bar{y} \mid x)$ 0-forms ,
$\partial_{\beta}=\frac{\partial}{\partial y^{\beta}}$,
$\bar{\partial}_{\alpha^{\prime}}=\frac{\partial}{\partial \bar{y} \alpha^{\prime}}$

Adjoint derivative

$$
D^{a d} \omega(y, \bar{y} \mid x)=D^{L} \omega(y, \bar{y} \mid x)-\lambda e^{\alpha \beta^{\prime}}\left(y_{\alpha} \bar{\partial}_{\beta^{\prime}}+\partial_{\alpha} \bar{y}_{\beta^{\prime}}\right) \omega(y, \bar{y} \mid x), \quad\left(D^{a d}\right)^{2}=0
$$

Twisted adjoint derivative

$$
D^{t w} C(y, \bar{y} \mid x)=D^{L} C(y, \bar{y} \mid x)+\lambda e^{\alpha \beta^{\prime}}\left(y_{\alpha} \bar{y}_{\beta^{\prime}}+\bar{\partial}_{\beta^{\prime}} \partial_{\alpha}\right) C(y, \bar{y} \mid x), \quad\left(D^{t w}\right)^{2}=0
$$

Lorentz covariant derivative

$$
D^{L} A(y, \bar{y} \mid x)=\mathrm{d} A(y, \bar{y} \mid x)-\left(\omega^{\alpha \beta} y_{\alpha} \partial_{\beta}+\bar{\omega}^{\alpha^{\prime} \beta^{\prime}} \bar{y}_{\alpha^{\prime}} \bar{\partial}_{\beta^{\prime}}\right) A(y, \bar{y} \mid x)
$$

Rank-two unfolded equations $=$ current equations

$$
D_{2}{ }^{t w} \mathcal{J}(y, \bar{y} \mid x)=0
$$

Rank-r twisted adjoint derivative
$D_{r}{ }^{t w}=\mathrm{d}-\omega^{\alpha \beta} y_{j \alpha} \partial_{\beta}^{j}-\bar{\omega}^{\alpha^{\prime} \beta^{\prime}} \bar{y}_{j \alpha^{\prime}} \bar{\partial}^{j}{ }_{\beta^{\prime}}+e^{\alpha \alpha^{\prime}}\left(y_{\alpha}^{i} \bar{y}_{\alpha^{\prime}}^{j}+\partial_{\alpha}^{i} \bar{\partial}^{j}{ }_{\alpha^{\prime}}\right) \delta_{i j}, \quad i, j=1, \ldots, r$
Three-form

$$
\Omega(\mathcal{J})=\left.e^{\alpha}{ }_{\alpha^{\prime}} \wedge e^{\beta \alpha^{\prime}} \wedge e_{\beta} \beta^{\beta^{\prime}}\left(\partial_{\alpha}^{1}-\partial_{\alpha}^{2}\right)\left(\bar{\partial}_{\beta^{\prime}}^{1}-\bar{\partial}_{\beta^{\prime}}^{2}\right) \mathcal{J}(y, \bar{y} \mid x)\right|_{y=\bar{y}=0}
$$

is closed by virtue of current equations
Conserved currents $=$ bilinears of solutions $C_{1,2}$ of rank-one unfolded equations

$$
\mathcal{J}_{\eta}(y, \bar{y} \mid x)=\eta C_{1}\left(y_{1}, \bar{y}_{1} \mid x\right) C_{2}\left(y_{2}, \bar{y}_{2} \mid x\right)
$$

that solve the current equations.
Current parameters η are differential operators commuting with $D_{2}^{t w}$.
$\mathcal{J}_{\eta}(y, \bar{y} \mid x)$ define bilinear conserved charges $Q_{\eta}=\int \Omega\left(\mathcal{J}_{\eta}\right)$

Current deformation

Schematically for the flat connection $D=\mathrm{d}+w$

$$
\left\{\begin{array} { l }
{ D \omega + L (C , \overline { C } , w) = 0 } \\
{ D C = 0 } \\
{ D _ { 2 } \mathcal { J } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
D \omega+L(C, \bar{C}, w)+G(w, \mathcal{J})=0 \\
D C+F(w, \mathcal{J})=0 \\
D_{2} \mathcal{J}=0
\end{array}\right.\right.
$$

Deformed equations in $A d S_{4}$ Sector zero-forms

$$
\left\{\begin{array}{l}
D^{t w} C+\left.\left(e^{\mu \nu^{\prime}} y_{\mu} F^{j} \bar{\partial}_{j \nu^{\prime}} \mathcal{J}+e^{\mu \nu^{\prime}} \bar{y}_{\nu^{\prime}} \bar{F}^{j} \partial_{j \nu} \mathcal{I}\right)\right|_{y=\bar{y}=0}=0 \\
D_{2}^{t w} \mathcal{J}=0, \quad D_{2}^{t w} \mathcal{I}=0
\end{array}\right.
$$

$$
\begin{aligned}
& \mathcal{N}_{ \pm}=y^{\alpha} \partial_{ \pm \alpha}, \quad \overline{\mathcal{N}_{ \pm}}=\overline{\mathcal{N}}_{ \pm}, \quad F^{ \pm}=\overline{F^{ \pm}}, \quad \partial_{ \pm} \sim \frac{\partial}{\partial y_{1}} \pm \frac{\partial}{\partial y_{2}} \\
& F^{ \pm}=\frac{\partial}{\partial \mathcal{N}_{ \pm}}\left(\sum_{2 m \geq n \geq 0} a_{n, m}\left(\mathcal{N}_{+}\right)^{n}\left(\mathcal{N}_{-}\right)^{2 m-n} \sum_{k \geq 0} \frac{\left(\overline{\mathcal{N}}_{+} \mathcal{N}_{-}+\overline{\mathcal{N}}_{-} \mathcal{N}_{+}\right)^{k}}{k!(k+2 m+1)!}\right)
\end{aligned}
$$

$a_{n, m}$: arbitrary coefficients,
$\left|a_{n, m}\right|$ reflect freedom in normalization of currents of different spins.
Phases of $a_{n, m}$ can be understood as resulting from
electric-magnetic-like duality transformations for different spins.

In terms of two-component spinors $\mathfrak{u}(2,2)$ connections are

$$
h^{\alpha \alpha^{\prime}}, \omega_{\alpha}^{\beta}, \bar{\omega}_{\alpha^{\prime}}^{\beta^{\prime}}, f_{\alpha \alpha^{\prime}}
$$

$\mathfrak{u}(2,2)$ flatness conditions lead to zero curvature conditions

$$
\begin{aligned}
R^{\alpha \beta^{\prime}} & =\mathrm{d} h^{\alpha \beta^{\prime}}-\omega_{\gamma}{ }^{\alpha} \wedge h^{\gamma \beta^{\prime}}-\bar{\omega}_{\gamma^{\prime}} \beta^{\beta^{\prime}} \wedge h^{\alpha \gamma^{\prime}}=0 \\
R_{\alpha \beta^{\prime}} & =\mathrm{d} f_{\alpha \beta^{\prime}}+\omega_{\alpha}{ }^{\gamma} \wedge f_{\gamma \beta^{\prime}}+\bar{\omega}_{\beta^{\prime}}{\gamma^{\prime}}^{\prime} \wedge f_{\alpha \gamma^{\prime}}=0 \\
R_{\alpha}{ }^{\beta} & =\mathrm{d} \omega_{\alpha}{ }^{\beta}+\omega_{\alpha} \gamma \wedge \omega_{\gamma}^{\beta}-f_{\alpha \gamma^{\prime}} \wedge h^{\gamma^{\prime} \beta}=0 \\
\bar{R}_{\alpha^{\prime}} \beta^{\prime} & =\mathrm{d} \bar{\omega}_{\alpha^{\prime}}{ }^{\beta^{\prime}}+\bar{\omega}_{\alpha^{\prime}}{ }^{\prime} \wedge \bar{\omega}_{\gamma^{\prime}}^{\beta^{\prime}}-f_{\gamma \alpha^{\prime}} \wedge h^{\gamma \beta^{\prime}}=0
\end{aligned}
$$

Traceless parts $\omega^{L}{ }_{\alpha}{ }^{\beta}$ and $\bar{\omega}^{L}{ }_{\alpha^{\prime}} \beta^{\beta^{\prime}}$ of $\omega_{\alpha}{ }^{\beta}$ and $\bar{\omega}_{\alpha^{\prime}} \beta^{\beta^{\prime}}$ describe the Lorentz connection. Traces are associated with the gauge fields

$$
b=\frac{1}{2}\left(\omega_{\alpha}^{\alpha}+\bar{\omega}_{\alpha^{\prime}} \alpha^{\prime}\right) \text { and } \tilde{b}=\frac{1}{2}\left(\omega_{\alpha}^{\alpha}-\bar{\omega}_{\alpha^{\prime}} \alpha^{\prime}\right) .
$$

$\mathfrak{s u}(2,2)$ connections are $h^{\alpha \alpha^{\prime}}, \omega_{\alpha}^{L \beta}, \bar{\omega}_{\alpha^{\prime}}^{L \beta^{\prime}}, f_{\alpha \alpha^{\prime}}, b ; \quad \widetilde{b}=0$
$A d S_{4}$ geometry is described by the Lorentz connections and vierbein $e^{\alpha \alpha}$ of $\mathfrak{s p}(4, \mathbb{R}) \subset \mathfrak{u}(2,2)$ via the substitution

$$
h^{\alpha \alpha^{\prime}}=\lambda e^{\alpha \alpha^{\prime}}, \quad f_{\alpha \alpha^{\prime}}=\lambda e_{\alpha \alpha^{\prime}}, \quad b=\widetilde{b}=0
$$

Rank $-r$ unfolded equations

$$
D_{r_{\mathfrak{u}}}^{t w} C(y, \bar{y} \mid x)=0
$$

$$
\begin{aligned}
& D_{r \mathfrak{u}}^{t w}= \mathrm{d}-\omega^{L \alpha \beta} y_{j \alpha} \partial_{\beta}^{j}-\bar{\omega}^{L \alpha^{\prime} \beta^{\prime}} \bar{y}_{j \alpha^{\prime}} \bar{\partial}_{\beta^{\prime}}^{j}+f_{\alpha \alpha^{\prime}} y_{i}^{\alpha} \bar{y}_{j}^{\alpha^{\prime}} \delta^{i j}+h^{\alpha \alpha^{\prime}} \partial_{\alpha}^{i} \bar{\partial}_{\alpha^{\prime}}^{j} \delta_{i j}+ \\
&+b \mathcal{D}_{r}+\widetilde{b} \mathcal{H}_{r} \\
& \quad(i, j=1, \ldots r)
\end{aligned}
$$

describe $\mathfrak{u}(2,2)$ invariant $4 d$ massless fields, while

$$
D_{r_{\mathfrak{s u}}}^{t w} C(y, \bar{y} \mid x)=0, \quad D_{r_{\mathfrak{s u}}}^{t w}=\left.D_{r_{\mathfrak{u}}}^{t w}\right|_{\widetilde{b}=0}
$$

describe $\mathfrak{s u}(2,2)$ invariant $4 d$ massless fields.
$\mathcal{H}_{r}=\frac{1}{2}\left(y_{j}{ }^{\alpha} \partial^{j}{ }_{\alpha}-\bar{y}_{j}{ }^{\alpha^{\prime}} \bar{\partial}^{j}{ }_{\alpha^{\prime}}\right) \quad$ rank-r helicity operator
$\mathcal{D}_{r}=r+\frac{1}{2}\left(y_{j}{ }^{\alpha} \partial^{j}{ }_{\alpha}+\bar{y}_{j} \alpha^{\prime} \bar{\partial}^{j}{ }_{\alpha^{\prime}}\right) \quad$ rank- r dilatation operator $\quad j=1, \ldots, r$
$C(y, \bar{y} \mid x)$ - generalized Weyl tensors.

Conformal dimension $\Delta=$ eigenvalue of \mathcal{D}_{r}

Spin- s rank- r primary field $\Delta=r+s$

Conformal invariance of the deformation

Conformal deformed equations

$$
\left\{\begin{array}{c}
D_{1 \mathfrak{s u}}^{t w} C+\left.\left(h^{\mu \nu^{\prime}} y_{\mu} F^{j} \bar{\partial}_{j \nu^{\prime}} \mathcal{J}+h^{\mu \nu^{\prime}} \bar{y}_{\nu^{\prime}} \bar{F}^{j} \partial_{j \nu} \mathcal{I}\right)\right|_{y=\bar{y}=0}=0, \\
D_{2 \mathfrak{s u}}^{t w} \mathcal{J}=0, \quad D_{2 \mathfrak{s u}}^{t w} \mathcal{I}=0
\end{array}\right.
$$

Consistency follows from the properties of the gluing operators.
Cancellation of the F-dependent part of the $b h$ term

$$
\begin{aligned}
& b h^{\mu \nu^{\prime}} y_{\mu}\left\{\underline{1}+\frac{1}{2}\left(3+N^{ \pm} \frac{\partial}{\partial N^{ \pm}}+\bar{N}^{ \pm} \frac{\partial}{\partial \bar{N}^{ \pm}}\right)\right. \\
&\left.-\frac{1}{2}\left(5+N^{ \pm} \frac{\partial}{\partial N^{ \pm}}+\bar{N}^{ \pm} \frac{\partial}{\partial \bar{N}^{ \pm}}\right)\right\}\left.F^{j} \bar{\partial}_{j \nu^{\prime}} \mathcal{J}\right|_{y^{ \pm}=\bar{y}^{ \pm}=0}=0
\end{aligned}
$$

First term that results from $d h^{\mu \nu^{\prime}}$ via flatness conditions, accounting for the conformal dimension of the frame field $h^{\mu \nu^{\prime}}$, compensates the difference between the rank-one and rank-two vacuum contributions to the conformal dimensions.
This proves consistency of the conformal deformation and hence its conformal invariance.

$$
\left\{\begin{array}{c}
D_{1}{ }_{\mathfrak{u}}^{t w} C+\left.\left(h^{\mu \nu^{\prime}} y_{\mu} F^{j} \bar{\partial}_{j \nu^{\prime}} \mathcal{J}+h^{\mu \nu^{\prime}} \bar{y}_{\nu^{\prime}} \bar{F}^{j} \partial_{j \nu} \mathcal{I}\right)\right|_{y=\bar{y}=0}=0, \\
D_{2 \mathfrak{u}}^{t w} \mathcal{J}=0, \quad D_{2}{ }_{\mathfrak{u}}^{t w} \mathcal{I}=0
\end{array}\right.
$$

Consistency demands
$\left.\widetilde{b} h^{\mu \nu^{\prime}} y_{\mu}\left\{\left(1+N^{ \pm} \frac{\partial}{\partial N^{ \pm}}-\bar{N}^{ \pm} \frac{\partial}{\partial \bar{N}^{ \pm}}\right)-\left(-1+N^{ \pm} \frac{\partial}{\partial N^{ \pm}}-\bar{N}^{ \pm} \frac{\partial}{\partial \bar{N}^{ \pm}}\right)\right\} F^{j} \bar{\partial}_{j \nu^{\prime}} \mathcal{J}\right|_{y^{ \pm}=\bar{y}^{ \pm}=0}=0$ However it equals to $\left.2 \tilde{b} h^{\mu \nu^{\prime}} y_{\mu} F^{j} \bar{\partial}_{j_{\nu}} \mathcal{J}\right|_{y^{ \pm}=\bar{y}^{ \pm}=0} \neq 0$
Vacuum contributions in the first and the second terms do not cancel because the helicity operator counts degree of y minus degree of $\bar{y} \quad$ while the gluing operator $\sim y \frac{\partial}{\partial \bar{y}^{ \pm}}$
Compensation of the non-zero term by adding some $\left.\widetilde{b} G \widetilde{\mathcal{J}}\right|_{y^{ \pm}=\bar{y}^{ \pm}=0}$? Consistency demands

$$
\left.\widetilde{b} F^{j} \bar{\partial}_{j \nu^{\prime}} \mathcal{J}\right|_{y^{ \pm}=\bar{y}^{ \pm}=0}=\left.\left.\widetilde{b} D_{1_{\mathfrak{u}}}^{t w} G \widetilde{\mathcal{J}}\right|_{y^{ \pm}=\bar{y}^{ \pm}=0} \equiv \widetilde{b} D_{1 \mathfrak{s u}^{t w}} G \widetilde{\mathcal{J}}\right|_{y^{ \pm}=\bar{y}^{ \pm}=0}
$$

\Rightarrow Original deformation is a full $D_{\text {su }}^{t w}$-differential
\Rightarrow Original conformal current interaction is trivial, which is not true

Conclusion

$$
\mathfrak{s p}(4) \subset \mathfrak{s u}(2,2) \subset \mathfrak{u}(2,2) \subset \mathfrak{s p}(8)
$$

The deformation remains consistent for the $\mathfrak{s u}(2,2)$ extension of $\mathfrak{s p}(4)$

but not beyond

The interactions preserve conformal symmetry but not $\mathfrak{u}(2,2) \subset \mathfrak{s p}(8)$.

