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Graviton: massless spin-② particle

most likely signals and search modes would be. There has been much work on these areas,

and each could be the topic of a separate review.

Conventions: Often we will work in an arbitrary number of dimensions, just because

it is easy to do so. In this case, D signifies the number of spacetime dimension and we stick

to D � 3. d signifies the number of space dimensions, d = D � 1. We use the mostly plus

metric signature convention, ⌘
µ⌫

= (�,+,+,+, · · · ). Tensors are symmetrized and anti-

symmetrized with unit weight, i.e T
(µ⌫)

= 1

2

(T
µ⌫

+ T
⌫µ

), T
[µ⌫]

= 1

2

(T
µ⌫

� T
⌫µ

). The reduced

4d Planck mass is M
P

= 1

(8⇡G)

1/2 ⇡ 2.43⇥ 1018 GeV. Conventions for the curvature tensors,

covariant derivatives and Lie derivatives are those of Carroll [36].

2 The free Fierz-Pauli action

We start by displaying an action for a single massive spin 2 particle in flat space, carried by

a symmetric tensor field h
µ⌫

,

S =

Z
dDx� 1

2
@
�

h
µ⌫

@�hµ⌫ +@
µ

h
⌫�

@⌫hµ� �@
µ

hµ⌫@
⌫

h+
1

2
@
�

h@�h� 1

2
m2(h

µ⌫

hµ⌫ �h2). (2.1)

This is known as the Fierz-Pauli action [28]. Our point of view will be to take this action

as given and then show that it describes a massive spin 2. There are, however, some (less

than thorough) ways of motivating this action. To start with, the action above contains all

possible contractions of two powers of h, with up to two derivatives. The two derivative

terms, those which survive when m = 0, are chosen to match exactly those obtained by

linearizing the Einstein-Hilbert action. The m = 0 terms describe a massless helicity 2

graviton and have the gauge symmetry

�h
µ⌫

= @
µ

⇠
⌫

+ @
⌫

⇠
µ

, (2.2)

for a spacetime dependent gauge parameter ⇠
µ

(x). This symmetry fixes all the coe�cients

of the two-derivative part of (2.1), up to an overall coe�cient. The mass term, however,

violates this gauge symmetry. The relative coe�cient of �1 between the h2 and h
µ⌫

hµ⌫

contractions is called the Fierz-Pauli tuning, and it not enforced by any known symmetry.

However, the only thing that needs to be said about this action is that it describes

a single massive spin 2 degree of freedom of mass m. We will show this explicitly in what
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• Smaller number of DoF      “❷ = ② + ①”

• Emergence of gauge symmetry

1 Introduction

In de Sitter space (dS), propagating spin-two modes have a mass gap, as opposed to those

in the flat space or AdS space. The lightest massive spin-two modes do not correspond to

the massless graviton, but to a special massive field called partially massless [1, 2]. This

lower bound is also known as Higuchi bound [3]. The partially-massless spin-two (PM)

field has one less degree of freedom (DoF) than a generic massive spin-two field due to the

decoupling of a scalar DoF: for example in four dimensions, it has four DoFs instead of the

five of the usual massive field.

The PM field is gaining renewed interests in the context of the massive gravity theory

of [4–6] and the bimetric gravity theory of [7, 8]. With a suitable choice of parameters,

these theories can be linearized around dS space and describe the propagation of massive

spin-two modes. One of the natural questions is: when the mass is tuned to that of PM,

can the resulting theory consistently describe the dynamics of an interacting PM field? In

other words, does the scalar DoF decouple from the theory in the PM limit? In the free

theory of the PM field ϕµν , the decoupling of the scalar DoF is due to the emergence of a

gauge symmetry of the form,

δ ϕµν =

(

∇̄µ∇̄ν +
Λ

3
ḡµν

)

α , (1.1)

where ḡµν and ∇̄µ are the metric and covariant derivative of dS space with cosmological

constant Λ . If the PM limit of massive or bimetric gravity is consistent, then they should

also admit a PM gauge symmetry which extends the free one (1.1) to the interacting level.

While the emergence of such a gauge symmetry has not yet been discovered, there have been

many discussions on the possible (in-)consistencies of this limit. Although pathologies of

the PM limit of massive gravity are generally accepted [9–11], the fate of partially massless

bimetric gravity is still under debate: see [12–14] for positive and [15, 16] for negative

results. One of the aims of the present work is to provide a definite answer to this question.

Another playground for the PM field is conformal gravity (CG), which has six propa-

gating DoFs [17–19]. Two DoFs correspond to the usual graviton while the additional four

DoFs organize themselves into a PM representation around dS space (see e.g. [20, 21]). In

order to see this point, it is convenient to recast the action into

SCG =

∫

d4x
√
−g

[

−
Λ

6
(R− 2Λ) +

6

Λ
LPM(ϕ,∇ϕ)

]

, (1.2)

by introducing an auxiliary field ϕµν which can then be interpreted as a PM field. Here,

LPM is a Lagrangian whose quadratic part coincides with that of the free PM field, while

the higher power parts involve interactions of ϕµν — see [21] for more details. CG is non-

unitary because of the wrong relative sign between the Einstein-Hilbert term and LPM .

Nevertheless, as far as the number of DoFs is concerned, CG provides a consistent theory

of PM plus gravity. One can see this from the presence of the PM gauge symmetry in CG,

which is nothing but a disguised version of Weyl symmetry. Since the relative negative sign

makes the theory non-unitary, one may think of naively flipping this sign. The redefinition

– 1 –
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Deser, Waldron
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Let us reformulate the task:

Find out all possible interacting theories 

for partially massless ❷ and massless ② !
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expression for (δαϕµν)(1) will be important for the forthcoming analysis and it is given by3

(δαϕµν)
(1) = 2σ λ

(

∇(µϕν)ρ −∇ρϕµν

)

∂ρα . (2.20)

Let us remind the reader that the expression (2.17) for S(3) is the covariantization of the

unique two-derivative self-interaction which exists only in four dimensions. On the other

hand, higher-derivative PM self-interactions are shown [25, 26] to do not affect the form of

(δαϕµν)(1). Therefore, the expression (2.20) provides the only possible form for the ϕ-linear

part of nonlinear PM gauge transformation, up to redefinitions of ϕµν which are physically

irrelevant.

Notice that the cubic-order gauge-invariance condition (2.9) does not constrain the

coupling constant λ at all. The coupling constants can be determined by the quartic or

higher-order consistency conditions. Hence, in principle, we may have to proceed to higher

orders to see the eventual (in-)consistency of the PM plus gravity theory. However, there

exist other consequences of gauge invariance that cubic couplings must satisfy. They can

be examined without analyzing quartic interactions. In the following, we shall explain this

point and solve the correponding conditions.

3 Symmetries of the PM plus gravity theory

Until now, we have analyzed the gauge invariance of the PM plus gravity action up to the

cubic order in the PM field. In general, when an action S , involving a set of bosonic fields

χi , admits gauge symmetries, then the gauge symmetries must form an (open) algebra:

δε δη − δε δη = δ[η,ε] + (trivial) , (3.1)

where δε stands for δε = δεχi
δ
δχi

in deWitt notation. The gauge-algebra bracket [η, ε] might

in principle also depend on fields: [η, ε] = f(η, ε,χi) , while the term “(trivial)” denotes

any trivial symmetry generated by an arbitrary antisymmetric matrix Cij = −Cji as

(trivial) = Cij(η, ε)
δS

δχi

δ

δχj
. (3.2)

In the following, we will seek the consequences of the above condition for the PM plus

gravity theory.

3The expression for (δαgµν)
(2) can be equally determined, though we shall not use it in later analysis.

It takes the following relatively simple form,

(δαgµν)
(2) = 8κλ (ϕρ

σ
∇(µϕν)σ − ϕ(µ

σ
∇ν)ϕρσ + ϕ(µ

σ
∇ρϕν)σ − ϕρ

σ
∇σϕµν) ∂

ρα , (2.18)

after the redefinition,

gµν → gµν + κλ (12ϕµ
ρϕνρϕ

σ
σ − 16ϕµ

ρϕν
σϕρσ + 4ϕµνϕρσϕ

ρσ + 20
3 gµνϕρ

αϕρσϕσα

− 4ϕµνϕ
ρ
ρϕ

σ
σ − 6 gµνϕ

ρ
ρϕσαϕ

σα + 4
3 gµνϕ

ρ
ρϕ

σ
σϕ

α
α) . (2.19)
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3.2 Lie algebra of global symmetries

Once we get the field-independent part of the gauge-algebra brackets, it is already sufficient

to fully determine the global-symmetry structure constants. Similarly to the gauge sym-

metries, the global-symmetry transformations must be closed; what is more is that they

must also form a Lie algebra. Hence, this point — whether the brackets indeed satisfy the

Jacobi identity and define a Lie algebra — provides us with a simple necessary condition

for the consistency of the theory.

In order to see this point more clearly, let us briefly move back to the general discussions

presented at the beginning of section 3. We shall now analyze the closure of the symmetry

algebra perturbatively. One considers the expansions:

S = S [2] + S [3] + · · · , δε = δ[0]
ε + δ[1]

ε + · · · ,

[η, ε] = [η, ε][0] + [η, ε][1] + · · · , Cij = C [0]

ij + C [1]

ij + · · · , (3.10)

where the superscript [n] stands for the total power of fields χi involved. Then, the lowest-

order part of the closure condition (3.1) reads simply

δ[0]
ε δ[1]

η − δ[0]
η δ[1]

ε = δ[0]

[η,ε][0]
. (3.11)

At the next-to-lowest order, it gives

δ[1]
ε δ[1]

η − δ[1]
η δ[1]

ε + δ[0]
ε δ[2]

η − δ[0]
η δ[2]

ε = δ[1]

[η,ε][0]
+ δ[0]

[η,ε][1]
+ C [0]

ij (η, ε)
δS [2]

δχi

δ

δχj
. (3.12)

Restricting gauge parameters to Killing fields, the above two conditions (3.11) and (3.12)

provide simple but important consistency requirements for the theory. The Killing fields ε̄

are defined by the solutions of the Killing equations:

δ[0]
ε̄ = 0 . (3.13)

The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second

condition (3.12) reduces to

δ[1]
ε̄ δ[1]

η̄ − δ[1]
η̄ δ[1]

ε̄ = δ[1]

[[η̄,ε̄]] + δ[0]

[η̄,ε̄][1]
+C [0]

ij (η̄, ε̄)
δS [2]

δχi

δ

δχj
, (3.15)

meaning that δ[1]
ε̄ provides a representation of the Lie algebra of the global symmetries on

the space of fields.

Having the above general lessons in mind, let us come back to the PM plus gravity

theory and consider the dS metric gµν = ḡµν and ϕµν = 0 as the background. The global

symmetries of this background are the subset of gauge symmetries which leave it invariant.

The gauge parameters of the global transformations are defined as the solutions of the

following Killing equations:

[

δξ̄ gµν
]

bg
= 2 ∇̄(µξ̄ν) = 0 ,

[

δᾱ ϕµν

]

bg
=

(

∇̄µ∇̄ν +
Λ

3
ḡµν

)

ᾱ = 0 , (3.16)
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σ
σ − 6 gµνϕ

ρ
ρϕσαϕ

σα + 4
3 gµνϕ

ρ
ρϕ

σ
σϕ

α
α) . (2.19)

– 6 –

�"S = 0

3.2 Lie algebra of global symmetries

Once we get the field-independent part of the gauge-algebra brackets, it is already sufficient

to fully determine the global-symmetry structure constants. Similarly to the gauge sym-

metries, the global-symmetry transformations must be closed; what is more is that they

must also form a Lie algebra. Hence, this point — whether the brackets indeed satisfy the

Jacobi identity and define a Lie algebra — provides us with a simple necessary condition

for the consistency of the theory.

In order to see this point more clearly, let us briefly move back to the general discussions

presented at the beginning of section 3. We shall now analyze the closure of the symmetry

algebra perturbatively. One considers the expansions:

S = S [2] + S [3] + · · · , δε = δ[0]
ε + δ[1]

ε + · · · ,

[η, ε] = [η, ε][0] + [η, ε][1] + · · · , Cij = C [0]

ij + C [1]

ij + · · · , (3.10)

where the superscript [n] stands for the total power of fields χi involved. Then, the lowest-

order part of the closure condition (3.1) reads simply

δ[0]
ε δ[1]

η − δ[0]
η δ[1]

ε = δ[0]

[η,ε][0]
. (3.11)

At the next-to-lowest order, it gives

δ[1]
ε δ[1]

η − δ[1]
η δ[1]

ε + δ[0]
ε δ[2]

η − δ[0]
η δ[2]

ε = δ[1]

[η,ε][0]
+ δ[0]

[η,ε][1]
+ C [0]

ij (η, ε)
δS [2]

δχi

δ

δχj
. (3.12)

Restricting gauge parameters to Killing fields, the above two conditions (3.11) and (3.12)

provide simple but important consistency requirements for the theory. The Killing fields ε̄

are defined by the solutions of the Killing equations:

δ[0]
ε̄ = 0 . (3.13)

The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second

condition (3.12) reduces to

δ[1]
ε̄ δ[1]

η̄ − δ[1]
η̄ δ[1]

ε̄ = δ[1]

[[η̄,ε̄]] + δ[0]

[η̄,ε̄][1]
+C [0]

ij (η̄, ε̄)
δS [2]

δχi

δ

δχj
, (3.15)

meaning that δ[1]
ε̄ provides a representation of the Lie algebra of the global symmetries on

the space of fields.

Having the above general lessons in mind, let us come back to the PM plus gravity

theory and consider the dS metric gµν = ḡµν and ϕµν = 0 as the background. The global

symmetries of this background are the subset of gauge symmetries which leave it invariant.

The gauge parameters of the global transformations are defined as the solutions of the

following Killing equations:

[

δξ̄ gµν
]

bg
= 2 ∇̄(µξ̄ν) = 0 ,

[

δᾱ ϕµν

]

bg
=

(

∇̄µ∇̄ν +
Λ

3
ḡµν

)

ᾱ = 0 , (3.16)
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ḡµν

)
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expression for (δαϕµν)(1) will be important for the forthcoming analysis and it is given by3

(δαϕµν)
(1) = 2σ λ

(

∇(µϕν)ρ −∇ρϕµν

)

∂ρα . (2.20)

Let us remind the reader that the expression (2.17) for S(3) is the covariantization of the

unique two-derivative self-interaction which exists only in four dimensions. On the other

hand, higher-derivative PM self-interactions are shown [25, 26] to do not affect the form of

(δαϕµν)(1). Therefore, the expression (2.20) provides the only possible form for the ϕ-linear

part of nonlinear PM gauge transformation, up to redefinitions of ϕµν which are physically

irrelevant.

Notice that the cubic-order gauge-invariance condition (2.9) does not constrain the

coupling constant λ at all. The coupling constants can be determined by the quartic or

higher-order consistency conditions. Hence, in principle, we may have to proceed to higher

orders to see the eventual (in-)consistency of the PM plus gravity theory. However, there

exist other consequences of gauge invariance that cubic couplings must satisfy. They can

be examined without analyzing quartic interactions. In the following, we shall explain this

point and solve the correponding conditions.

3 Symmetries of the PM plus gravity theory

Until now, we have analyzed the gauge invariance of the PM plus gravity action up to the

cubic order in the PM field. In general, when an action S , involving a set of bosonic fields

χi , admits gauge symmetries, then the gauge symmetries must form an (open) algebra:

δε δη − δε δη = δ[η,ε] + (trivial) , (3.1)

where δε stands for δε = δεχi
δ
δχi

in deWitt notation. The gauge-algebra bracket [η, ε] might

in principle also depend on fields: [η, ε] = f(η, ε,χi) , while the term “(trivial)” denotes

any trivial symmetry generated by an arbitrary antisymmetric matrix Cij = −Cji as

(trivial) = Cij(η, ε)
δS

δχi

δ

δχj
. (3.2)

In the following, we will seek the consequences of the above condition for the PM plus

gravity theory.

3The expression for (δαgµν)
(2) can be equally determined, though we shall not use it in later analysis.

It takes the following relatively simple form,

(δαgµν)
(2) = 8κλ (ϕρ

σ
∇(µϕν)σ − ϕ(µ

σ
∇ν)ϕρσ + ϕ(µ

σ
∇ρϕν)σ − ϕρ

σ
∇σϕµν) ∂

ρα , (2.18)

after the redefinition,

gµν → gµν + κλ (12ϕµ
ρϕνρϕ

σ
σ − 16ϕµ

ρϕν
σϕρσ + 4ϕµνϕρσϕ

ρσ + 20
3 gµνϕρ

αϕρσϕσα

− 4ϕµνϕ
ρ
ρϕ

σ
σ − 6 gµνϕ

ρ
ρϕσαϕ

σα + 4
3 gµνϕ

ρ
ρϕ

σ
σϕ

α
α) . (2.19)
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3.2 Lie algebra of global symmetries

Once we get the field-independent part of the gauge-algebra brackets, it is already sufficient

to fully determine the global-symmetry structure constants. Similarly to the gauge sym-

metries, the global-symmetry transformations must be closed; what is more is that they

must also form a Lie algebra. Hence, this point — whether the brackets indeed satisfy the

Jacobi identity and define a Lie algebra — provides us with a simple necessary condition

for the consistency of the theory.

In order to see this point more clearly, let us briefly move back to the general discussions

presented at the beginning of section 3. We shall now analyze the closure of the symmetry

algebra perturbatively. One considers the expansions:

S = S [2] + S [3] + · · · , δε = δ[0]
ε + δ[1]

ε + · · · ,

[η, ε] = [η, ε][0] + [η, ε][1] + · · · , Cij = C [0]

ij + C [1]

ij + · · · , (3.10)

where the superscript [n] stands for the total power of fields χi involved. Then, the lowest-

order part of the closure condition (3.1) reads simply

δ[0]
ε δ[1]

η − δ[0]
η δ[1]

ε = δ[0]

[η,ε][0]
. (3.11)

At the next-to-lowest order, it gives

δ[1]
ε δ[1]

η − δ[1]
η δ[1]

ε + δ[0]
ε δ[2]

η − δ[0]
η δ[2]

ε = δ[1]

[η,ε][0]
+ δ[0]

[η,ε][1]
+ C [0]

ij (η, ε)
δS [2]

δχi

δ

δχj
. (3.12)

Restricting gauge parameters to Killing fields, the above two conditions (3.11) and (3.12)

provide simple but important consistency requirements for the theory. The Killing fields ε̄

are defined by the solutions of the Killing equations:

δ[0]
ε̄ = 0 . (3.13)

The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second

condition (3.12) reduces to

δ[1]
ε̄ δ[1]

η̄ − δ[1]
η̄ δ[1]

ε̄ = δ[1]

[[η̄,ε̄]] + δ[0]

[η̄,ε̄][1]
+C [0]

ij (η̄, ε̄)
δS [2]

δχi

δ

δχj
, (3.15)

meaning that δ[1]
ε̄ provides a representation of the Lie algebra of the global symmetries on

the space of fields.

Having the above general lessons in mind, let us come back to the PM plus gravity

theory and consider the dS metric gµν = ḡµν and ϕµν = 0 as the background. The global

symmetries of this background are the subset of gauge symmetries which leave it invariant.

The gauge parameters of the global transformations are defined as the solutions of the

following Killing equations:

[

δξ̄ gµν
]

bg
= 2 ∇̄(µξ̄ν) = 0 ,

[

δᾱ ϕµν

]

bg
=

(

∇̄µ∇̄ν +
Λ

3
ḡµν

)

ᾱ = 0 , (3.16)
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expression for (δαϕµν)(1) will be important for the forthcoming analysis and it is given by3

(δαϕµν)
(1) = 2σ λ

(

∇(µϕν)ρ −∇ρϕµν

)

∂ρα . (2.20)

Let us remind the reader that the expression (2.17) for S(3) is the covariantization of the

unique two-derivative self-interaction which exists only in four dimensions. On the other

hand, higher-derivative PM self-interactions are shown [25, 26] to do not affect the form of

(δαϕµν)(1). Therefore, the expression (2.20) provides the only possible form for the ϕ-linear

part of nonlinear PM gauge transformation, up to redefinitions of ϕµν which are physically

irrelevant.

Notice that the cubic-order gauge-invariance condition (2.9) does not constrain the

coupling constant λ at all. The coupling constants can be determined by the quartic or

higher-order consistency conditions. Hence, in principle, we may have to proceed to higher

orders to see the eventual (in-)consistency of the PM plus gravity theory. However, there

exist other consequences of gauge invariance that cubic couplings must satisfy. They can

be examined without analyzing quartic interactions. In the following, we shall explain this

point and solve the correponding conditions.

3 Symmetries of the PM plus gravity theory

Until now, we have analyzed the gauge invariance of the PM plus gravity action up to the

cubic order in the PM field. In general, when an action S , involving a set of bosonic fields

χi , admits gauge symmetries, then the gauge symmetries must form an (open) algebra:

δε δη − δε δη = δ[η,ε] + (trivial) , (3.1)

where δε stands for δε = δεχi
δ
δχi

in deWitt notation. The gauge-algebra bracket [η, ε] might

in principle also depend on fields: [η, ε] = f(η, ε,χi) , while the term “(trivial)” denotes

any trivial symmetry generated by an arbitrary antisymmetric matrix Cij = −Cji as

(trivial) = Cij(η, ε)
δS

δχi

δ

δχj
. (3.2)

In the following, we will seek the consequences of the above condition for the PM plus

gravity theory.

3The expression for (δαgµν)
(2) can be equally determined, though we shall not use it in later analysis.

It takes the following relatively simple form,

(δαgµν)
(2) = 8κλ (ϕρ

σ
∇(µϕν)σ − ϕ(µ

σ
∇ν)ϕρσ + ϕ(µ

σ
∇ρϕν)σ − ϕρ

σ
∇σϕµν) ∂

ρα , (2.18)

after the redefinition,

gµν → gµν + κλ (12ϕµ
ρϕνρϕ

σ
σ − 16ϕµ

ρϕν
σϕρσ + 4ϕµνϕρσϕ

ρσ + 20
3 gµνϕρ

αϕρσϕσα

− 4ϕµνϕ
ρ
ρϕ

σ
σ − 6 gµνϕ

ρ
ρϕσαϕ

σα + 4
3 gµνϕ

ρ
ρϕ

σ
σϕ

α
α) . (2.19)
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3.2 Lie algebra of global symmetries

Once we get the field-independent part of the gauge-algebra brackets, it is already sufficient

to fully determine the global-symmetry structure constants. Similarly to the gauge sym-

metries, the global-symmetry transformations must be closed; what is more is that they

must also form a Lie algebra. Hence, this point — whether the brackets indeed satisfy the

Jacobi identity and define a Lie algebra — provides us with a simple necessary condition

for the consistency of the theory.

In order to see this point more clearly, let us briefly move back to the general discussions

presented at the beginning of section 3. We shall now analyze the closure of the symmetry

algebra perturbatively. One considers the expansions:

S = S [2] + S [3] + · · · , δε = δ[0]
ε + δ[1]

ε + · · · ,

[η, ε] = [η, ε][0] + [η, ε][1] + · · · , Cij = C [0]

ij + C [1]

ij + · · · , (3.10)

where the superscript [n] stands for the total power of fields χi involved. Then, the lowest-

order part of the closure condition (3.1) reads simply

δ[0]
ε δ[1]

η − δ[0]
η δ[1]

ε = δ[0]

[η,ε][0]
. (3.11)

At the next-to-lowest order, it gives

δ[1]
ε δ[1]

η − δ[1]
η δ[1]

ε + δ[0]
ε δ[2]

η − δ[0]
η δ[2]

ε = δ[1]

[η,ε][0]
+ δ[0]

[η,ε][1]
+ C [0]

ij (η, ε)
δS [2]

δχi

δ

δχj
. (3.12)

Restricting gauge parameters to Killing fields, the above two conditions (3.11) and (3.12)

provide simple but important consistency requirements for the theory. The Killing fields ε̄

are defined by the solutions of the Killing equations:

δ[0]
ε̄ = 0 . (3.13)

The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second
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symmetries of this background are the subset of gauge symmetries which leave it invariant.

The gauge parameters of the global transformations are defined as the solutions of the

following Killing equations:
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]

bg
= 2 ∇̄(µξ̄ν) = 0 ,
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theory and consider the dS metric gµν = ḡµν and ϕµν = 0 as the background. The global

symmetries of this background are the subset of gauge symmetries which leave it invariant.

The gauge parameters of the global transformations are defined as the solutions of the

following Killing equations:

[

δξ̄ gµν
]

bg
= 2 ∇̄(µξ̄ν) = 0 ,

[
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ᾱ = 0 , (3.16)

– 8 –

3.2 Lie algebra of global symmetries

Once we get the field-independent part of the gauge-algebra brackets, it is already sufficient

to fully determine the global-symmetry structure constants. Similarly to the gauge sym-

metries, the global-symmetry transformations must be closed; what is more is that they

must also form a Lie algebra. Hence, this point — whether the brackets indeed satisfy the

Jacobi identity and define a Lie algebra — provides us with a simple necessary condition

for the consistency of the theory.

In order to see this point more clearly, let us briefly move back to the general discussions

presented at the beginning of section 3. We shall now analyze the closure of the symmetry

algebra perturbatively. One considers the expansions:

S = S [2] + S [3] + · · · , δε = δ[0]
ε + δ[1]

ε + · · · ,

[η, ε] = [η, ε][0] + [η, ε][1] + · · · , Cij = C [0]

ij + C [1]

ij + · · · , (3.10)

where the superscript [n] stands for the total power of fields χi involved. Then, the lowest-

order part of the closure condition (3.1) reads simply

δ[0]
ε δ[1]

η − δ[0]
η δ[1]

ε = δ[0]

[η,ε][0]
. (3.11)

At the next-to-lowest order, it gives

δ[1]
ε δ[1]

η − δ[1]
η δ[1]

ε + δ[0]
ε δ[2]

η − δ[0]
η δ[2]

ε = δ[1]

[η,ε][0]
+ δ[0]

[η,ε][1]
+ C [0]

ij (η, ε)
δS [2]

δχi

δ

δχj
. (3.12)

Restricting gauge parameters to Killing fields, the above two conditions (3.11) and (3.12)

provide simple but important consistency requirements for the theory. The Killing fields ε̄

are defined by the solutions of the Killing equations:

δ[0]
ε̄ = 0 . (3.13)

The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second

condition (3.12) reduces to

δ[1]
ε̄ δ[1]

η̄ − δ[1]
η̄ δ[1]

ε̄ = δ[1]

[[η̄,ε̄]] + δ[0]

[η̄,ε̄][1]
+C [0]

ij (η̄, ε̄)
δS [2]

δχi

δ

δχj
, (3.15)

meaning that δ[1]
ε̄ provides a representation of the Lie algebra of the global symmetries on

the space of fields.

Having the above general lessons in mind, let us come back to the PM plus gravity
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3.2 Lie algebra of global symmetries

Once we get the field-independent part of the gauge-algebra brackets, it is already sufficient

to fully determine the global-symmetry structure constants. Similarly to the gauge sym-

metries, the global-symmetry transformations must be closed; what is more is that they

must also form a Lie algebra. Hence, this point — whether the brackets indeed satisfy the

Jacobi identity and define a Lie algebra — provides us with a simple necessary condition

for the consistency of the theory.

In order to see this point more clearly, let us briefly move back to the general discussions

presented at the beginning of section 3. We shall now analyze the closure of the symmetry

algebra perturbatively. One considers the expansions:

S = S [2] + S [3] + · · · , δε = δ[0]
ε + δ[1]

ε + · · · ,

[η, ε] = [η, ε][0] + [η, ε][1] + · · · , Cij = C [0]

ij + C [1]

ij + · · · , (3.10)

where the superscript [n] stands for the total power of fields χi involved. Then, the lowest-

order part of the closure condition (3.1) reads simply

δ[0]
ε δ[1]

η − δ[0]
η δ[1]

ε = δ[0]

[η,ε][0]
. (3.11)

At the next-to-lowest order, it gives

δ[1]
ε δ[1]

η − δ[1]
η δ[1]

ε + δ[0]
ε δ[2]

η − δ[0]
η δ[2]

ε = δ[1]

[η,ε][0]
+ δ[0]

[η,ε][1]
+ C [0]

ij (η, ε)
δS [2]

δχi

δ

δχj
. (3.12)

Restricting gauge parameters to Killing fields, the above two conditions (3.11) and (3.12)

provide simple but important consistency requirements for the theory. The Killing fields ε̄

are defined by the solutions of the Killing equations:

δ[0]
ε̄ = 0 . (3.13)

The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second

condition (3.12) reduces to

δ[1]
ε̄ δ[1]

η̄ − δ[1]
η̄ δ[1]

ε̄ = δ[1]

[[η̄,ε̄]] + δ[0]

[η̄,ε̄][1]
+C [0]

ij (η̄, ε̄)
δS [2]

δχi

δ

δχj
, (3.15)

meaning that δ[1]
ε̄ provides a representation of the Lie algebra of the global symmetries on

the space of fields.

Having the above general lessons in mind, let us come back to the PM plus gravity

theory and consider the dS metric gµν = ḡµν and ϕµν = 0 as the background. The global

symmetries of this background are the subset of gauge symmetries which leave it invariant.

The gauge parameters of the global transformations are defined as the solutions of the

following Killing equations:

[

δξ̄ gµν
]

bg
= 2 ∇̄(µξ̄ν) = 0 ,

[

δᾱ ϕµν

]

bg
=

(

∇̄µ∇̄ν +
Λ

3
ḡµν

)

ᾱ = 0 , (3.16)
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ᾱ = 0 , (3.16)

– 8 –

Global symmetry



3.2 Lie algebra of global symmetries

Once we get the field-independent part of the gauge-algebra brackets, it is already sufficient

to fully determine the global-symmetry structure constants. Similarly to the gauge sym-

metries, the global-symmetry transformations must be closed; what is more is that they

must also form a Lie algebra. Hence, this point — whether the brackets indeed satisfy the

Jacobi identity and define a Lie algebra — provides us with a simple necessary condition

for the consistency of the theory.

In order to see this point more clearly, let us briefly move back to the general discussions

presented at the beginning of section 3. We shall now analyze the closure of the symmetry

algebra perturbatively. One considers the expansions:

S = S [2] + S [3] + · · · , δε = δ[0]
ε + δ[1]

ε + · · · ,

[η, ε] = [η, ε][0] + [η, ε][1] + · · · , Cij = C [0]

ij + C [1]

ij + · · · , (3.10)

where the superscript [n] stands for the total power of fields χi involved. Then, the lowest-

order part of the closure condition (3.1) reads simply

δ[0]
ε δ[1]

η − δ[0]
η δ[1]

ε = δ[0]

[η,ε][0]
. (3.11)

At the next-to-lowest order, it gives

δ[1]
ε δ[1]

η − δ[1]
η δ[1]

ε + δ[0]
ε δ[2]

η − δ[0]
η δ[2]

ε = δ[1]

[η,ε][0]
+ δ[0]

[η,ε][1]
+ C [0]

ij (η, ε)
δS [2]

δχi

δ

δχj
. (3.12)

Restricting gauge parameters to Killing fields, the above two conditions (3.11) and (3.12)

provide simple but important consistency requirements for the theory. The Killing fields ε̄

are defined by the solutions of the Killing equations:

δ[0]
ε̄ = 0 . (3.13)

The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second

condition (3.12) reduces to

δ[1]
ε̄ δ[1]

η̄ − δ[1]
η̄ δ[1]

ε̄ = δ[1]

[[η̄,ε̄]] + δ[0]

[η̄,ε̄][1]
+C [0]

ij (η̄, ε̄)
δS [2]

δχi

δ

δχj
, (3.15)

meaning that δ[1]
ε̄ provides a representation of the Lie algebra of the global symmetries on

the space of fields.

Having the above general lessons in mind, let us come back to the PM plus gravity
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theory and consider the dS metric gµν = ḡµν and ϕµν = 0 as the background. The global

symmetries of this background are the subset of gauge symmetries which leave it invariant.

The gauge parameters of the global transformations are defined as the solutions of the

following Killing equations:

[

δξ̄ gµν
]

bg
= 2 ∇̄(µξ̄ν) = 0 ,

[
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theory and consider the dS metric gµν = ḡµν and ϕµν = 0 as the background. The global

symmetries of this background are the subset of gauge symmetries which leave it invariant.

The gauge parameters of the global transformations are defined as the solutions of the

following Killing equations:

[

δξ̄ gµν
]

bg
= 2 ∇̄(µξ̄ν) = 0 ,

[
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ḡµν

)
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ᾱ = 0 , (3.16)

– 8 –

Global symmetry

⇠̄µ ! MAB ↵̄ ! KA• Generators:

• Lie brackets            :[ · , · ][0]

⇥
MAB , MCD

⇤
= 2↵ (⌘D[AMB]C + ⌘C[BMA]D)

⇥
MAB , KCD

⇤
= 2� � ⌘C[B KA]

⇥
KA , KB

⇤
= �� ⇤MAB

S[3] =

Z
↵L1(h, h, h) + � L2(h,',') + � L3(',',')

S[2] =

Z
h @2h+ � ' (@2 + 2

3 ⇤)'

3.2 Lie algebra of global symmetries

Once we get the field-independent part of the gauge-algebra brackets, it is already sufficient

to fully determine the global-symmetry structure constants. Similarly to the gauge sym-

metries, the global-symmetry transformations must be closed; what is more is that they

must also form a Lie algebra. Hence, this point — whether the brackets indeed satisfy the

Jacobi identity and define a Lie algebra — provides us with a simple necessary condition

for the consistency of the theory.

In order to see this point more clearly, let us briefly move back to the general discussions

presented at the beginning of section 3. We shall now analyze the closure of the symmetry

algebra perturbatively. One considers the expansions:

S = S [2] + S [3] + · · · , δε = δ[0]
ε + δ[1]

ε + · · · ,

[η, ε] = [η, ε][0] + [η, ε][1] + · · · , Cij = C [0]

ij + C [1]

ij + · · · , (3.10)

where the superscript [n] stands for the total power of fields χi involved. Then, the lowest-

order part of the closure condition (3.1) reads simply

δ[0]
ε δ[1]

η − δ[0]
η δ[1]

ε = δ[0]

[η,ε][0]
. (3.11)

At the next-to-lowest order, it gives

δ[1]
ε δ[1]

η − δ[1]
η δ[1]

ε + δ[0]
ε δ[2]

η − δ[0]
η δ[2]

ε = δ[1]

[η,ε][0]
+ δ[0]

[η,ε][1]
+ C [0]

ij (η, ε)
δS [2]

δχi

δ

δχj
. (3.12)

Restricting gauge parameters to Killing fields, the above two conditions (3.11) and (3.12)

provide simple but important consistency requirements for the theory. The Killing fields ε̄

are defined by the solutions of the Killing equations:

δ[0]
ε̄ = 0 . (3.13)

The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second

condition (3.12) reduces to

δ[1]
ε̄ δ[1]

η̄ − δ[1]
η̄ δ[1]

ε̄ = δ[1]

[[η̄,ε̄]] + δ[0]

[η̄,ε̄][1]
+C [0]

ij (η̄, ε̄)
δS [2]

δχi

δ

δχj
, (3.15)

meaning that δ[1]
ε̄ provides a representation of the Lie algebra of the global symmetries on

the space of fields.

Having the above general lessons in mind, let us come back to the PM plus gravity
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theory and consider the dS metric gµν = ḡµν and ϕµν = 0 as the background. The global

symmetries of this background are the subset of gauge symmetries which leave it invariant.

The gauge parameters of the global transformations are defined as the solutions of the

following Killing equations:

[

δξ̄ gµν
]

bg
= 2 ∇̄(µξ̄ν) = 0 ,

[
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ᾱ = 0 , (3.16)

– 8 –

Global symmetry

⇠̄µ ! MAB ↵̄ ! KA• Generators:

• Lie brackets            :[ · , · ][0]

⇥
MAB , MCD

⇤
= 2 (⌘D[AMB]C + ⌘C[BMA]D)

⇥
KA , KB

⇤
= � �

↵ ⇤MAB

⇥
MAB , KCD

⇤
= 2� �

↵ ⌘C[B KA]

S[3] =

Z
↵L1(h, h, h) + � L2(h,',') + � L3(',',')

S[2] =

Z
h @2h+ � ' (@2 + 2

3 ⇤)'

3.2 Lie algebra of global symmetries

Once we get the field-independent part of the gauge-algebra brackets, it is already sufficient

to fully determine the global-symmetry structure constants. Similarly to the gauge sym-

metries, the global-symmetry transformations must be closed; what is more is that they

must also form a Lie algebra. Hence, this point — whether the brackets indeed satisfy the

Jacobi identity and define a Lie algebra — provides us with a simple necessary condition

for the consistency of the theory.

In order to see this point more clearly, let us briefly move back to the general discussions

presented at the beginning of section 3. We shall now analyze the closure of the symmetry

algebra perturbatively. One considers the expansions:

S = S [2] + S [3] + · · · , δε = δ[0]
ε + δ[1]

ε + · · · ,

[η, ε] = [η, ε][0] + [η, ε][1] + · · · , Cij = C [0]

ij + C [1]

ij + · · · , (3.10)

where the superscript [n] stands for the total power of fields χi involved. Then, the lowest-

order part of the closure condition (3.1) reads simply

δ[0]
ε δ[1]

η − δ[0]
η δ[1]

ε = δ[0]

[η,ε][0]
. (3.11)

At the next-to-lowest order, it gives

δ[1]
ε δ[1]

η − δ[1]
η δ[1]

ε + δ[0]
ε δ[2]

η − δ[0]
η δ[2]

ε = δ[1]

[η,ε][0]
+ δ[0]

[η,ε][1]
+ C [0]

ij (η, ε)
δS [2]

δχi

δ

δχj
. (3.12)

Restricting gauge parameters to Killing fields, the above two conditions (3.11) and (3.12)

provide simple but important consistency requirements for the theory. The Killing fields ε̄

are defined by the solutions of the Killing equations:

δ[0]
ε̄ = 0 . (3.13)

The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second

condition (3.12) reduces to

δ[1]
ε̄ δ[1]

η̄ − δ[1]
η̄ δ[1]

ε̄ = δ[1]

[[η̄,ε̄]] + δ[0]

[η̄,ε̄][1]
+C [0]

ij (η̄, ε̄)
δS [2]

δχi

δ

δχj
, (3.15)

meaning that δ[1]
ε̄ provides a representation of the Lie algebra of the global symmetries on

the space of fields.

Having the above general lessons in mind, let us come back to the PM plus gravity
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δᾱ ϕµν

]

bg
=

(

∇̄µ∇̄ν +
Λ

3
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ᾱ = 0 , (3.16)

– 8 –

Global symmetry

⇠̄µ ! MAB ↵̄ ! KA• Generators:

• Lie brackets            :[ · , · ][0]

⇥
MAB , KCD

⇤
= 2 ⌘C[B KA]

⇥
KA , KB

⇤
= ��⇤MAB

⇥
MAB , MCD

⇤
= 2 (⌘D[AMB]C + ⌘C[BMA]D)

S[3] =

Z
↵L1(h, h, h) + � L2(h,',') + � L3(',',')

S[2] =

Z
h @2h+ � ' (@2 + 2

3 ⇤)'

❖ Jacobi identity fixes � �
↵ = 1

❖ Global sym: SO(2, 4)

SO(1, 5) �⇤ > 0

�⇤ < 0for

for
{

3.2 Lie algebra of global symmetries

Once we get the field-independent part of the gauge-algebra brackets, it is already sufficient

to fully determine the global-symmetry structure constants. Similarly to the gauge sym-

metries, the global-symmetry transformations must be closed; what is more is that they

must also form a Lie algebra. Hence, this point — whether the brackets indeed satisfy the

Jacobi identity and define a Lie algebra — provides us with a simple necessary condition

for the consistency of the theory.

In order to see this point more clearly, let us briefly move back to the general discussions

presented at the beginning of section 3. We shall now analyze the closure of the symmetry

algebra perturbatively. One considers the expansions:

S = S [2] + S [3] + · · · , δε = δ[0]
ε + δ[1]

ε + · · · ,

[η, ε] = [η, ε][0] + [η, ε][1] + · · · , Cij = C [0]

ij + C [1]

ij + · · · , (3.10)

where the superscript [n] stands for the total power of fields χi involved. Then, the lowest-

order part of the closure condition (3.1) reads simply

δ[0]
ε δ[1]

η − δ[0]
η δ[1]

ε = δ[0]

[η,ε][0]
. (3.11)

At the next-to-lowest order, it gives

δ[1]
ε δ[1]

η − δ[1]
η δ[1]

ε + δ[0]
ε δ[2]

η − δ[0]
η δ[2]

ε = δ[1]

[η,ε][0]
+ δ[0]

[η,ε][1]
+ C [0]

ij (η, ε)
δS [2]

δχi

δ

δχj
. (3.12)

Restricting gauge parameters to Killing fields, the above two conditions (3.11) and (3.12)

provide simple but important consistency requirements for the theory. The Killing fields ε̄

are defined by the solutions of the Killing equations:

δ[0]
ε̄ = 0 . (3.13)

The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second

condition (3.12) reduces to

δ[1]
ε̄ δ[1]

η̄ − δ[1]
η̄ δ[1]

ε̄ = δ[1]

[[η̄,ε̄]] + δ[0]

[η̄,ε̄][1]
+C [0]

ij (η̄, ε̄)
δS [2]

δχi

δ

δχj
, (3.15)

meaning that δ[1]
ε̄ provides a representation of the Lie algebra of the global symmetries on

the space of fields.

Having the above general lessons in mind, let us come back to the PM plus gravity
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The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second

condition (3.12) reduces to

δ[1]
ε̄ δ[1]

η̄ − δ[1]
η̄ δ[1]

ε̄ = δ[1]

[[η̄,ε̄]] + δ[0]

[η̄,ε̄][1]
+C [0]

ij (η̄, ε̄)
δS [2]

δχi

δ

δχj
, (3.15)

meaning that δ[1]
ε̄ provides a representation of the Lie algebra of the global symmetries on

the space of fields.

Having the above general lessons in mind, let us come back to the PM plus gravity

theory and consider the dS metric gµν = ḡµν and ϕµν = 0 as the background. The global

symmetries of this background are the subset of gauge symmetries which leave it invariant.

The gauge parameters of the global transformations are defined as the solutions of the

following Killing equations:

[

δξ̄ gµν
]

bg
= 2 ∇̄(µξ̄ν) = 0 ,

[

δᾱ ϕµν

]

bg
=

(

∇̄µ∇̄ν +
Λ

3
ḡµν

)

ᾱ = 0 , (3.16)

– 8 –

Admissibility condition

S[3] =

Z
↵L1(h, h, h) + � L2(h,',') + � L3(',',')

S[2] =

Z
h @2h+ � ' (@2 + 2

3 ⇤)'

With (3.27) and (3.28), we are ready to compute the LHS of eq. (3.15), which is the

commutator between two PM transformations.5 After straightforward calculations and

imposing the global symmetry condition on gauge parameters, we obtain the commutator

of two PM transformations as

(

δ[1]
ᾱ1

δ[1]
ᾱ2

− δ[1]
ᾱ2

δ[1]
ᾱ1

)

hµν = 2 ∇̄(µAρ hν)ρ +Aρ ∇̄ρhµν + 2 ∇̄(µBν) ,
(

δ[1]
ᾱ1

δ[1]
ᾱ2

− δ[1]
ᾱ2

δ[1]
ᾱ1

)

ϕµν = 2 ∇̄(µAρ ϕν)ρ +Aρ ∇̄ρϕµν + (λ2 + σκ) Cµν , (3.29)

where Aµ , Bµ and Cµν are given by

Aµ = 2σ κ
Λ

3
ᾱ[1 ∂µᾱ2] , (3.30)

Bµ = −2σ κ

[

∂ρ ᾱ[1 ∂
σᾱ2] (∇̄ρhσµ − 4σ λ ∇̄ρϕσµ) +

2Λ

3
ᾱ[1 ∂

ρᾱ2] hρµ

]

, (3.31)

Cµν = 4 ∂ρα[1 ∂
σα2] ∇̄(µ|∇̄σϕ|ν)ρ + 4Λα[1∂

ρα2](∇̄(µϕν)ρ − ∇̄ρϕµν) . (3.32)

Let us analyze each term in (3.29) to see whether they are compatible with the RHS of

eq. (3.15):

• First, the terms involving Aµ in (3.29) take the form of a Lie derivative. Moreover

one can show that the form (3.30) of Aµ coincides with the bracket (3.17):

Aµ ∂µ = [[ ᾱ2 , ᾱ1 ]] . (3.33)

Hence, these terms correspond to the δ[1]

[[ ᾱ2 ᾱ1]]
contribution in the RHS of eq. (3.15).

• Second, the terms involving Bµ in (3.29) take the form of linearized diffeomorphism,

hence corresponding to the δ[0]

[ ᾱ2 ᾱ1][1]
contribution in the RHS of eq. (3.15) with

[ ᾱ2 , ᾱ1 ]
[1] = Bµ ∂µ . (3.34)

The above relation can be explicitly checked by extracting δ[2]
α hµν from eq. (2.18).

• Finally, there remains the Cµν term in (3.29), which does not correspond to any of the

contributions in the RHS of eq. (3.15). Therefore, in order the admissibility condition

to be satisfied, we must require that the coefficient of the Cµν term vanishes:

λ2 + σ κ = 0 . (3.35)

This determines the coupling constant λ for the PM self-interaction in terms of the

gravitational constant κ = 8πGN as λ = ±
√
−σ κ . Now one has two options de-

pending on the relative sign σ between the kinetic terms:

– when σ = −1, we get λ = ±
√
κ which coincides with the coupling constant of

the PM self-interaction in CG;

5One can examine also the other commutators, but they do actually satisfy the admissibility condition

(3.15) without constraining any coupling constant.
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3.2 Lie algebra of global symmetries

Once we get the field-independent part of the gauge-algebra brackets, it is already sufficient

to fully determine the global-symmetry structure constants. Similarly to the gauge sym-

metries, the global-symmetry transformations must be closed; what is more is that they

must also form a Lie algebra. Hence, this point — whether the brackets indeed satisfy the

Jacobi identity and define a Lie algebra — provides us with a simple necessary condition

for the consistency of the theory.

In order to see this point more clearly, let us briefly move back to the general discussions

presented at the beginning of section 3. We shall now analyze the closure of the symmetry

algebra perturbatively. One considers the expansions:

S = S [2] + S [3] + · · · , δε = δ[0]
ε + δ[1]

ε + · · · ,

[η, ε] = [η, ε][0] + [η, ε][1] + · · · , Cij = C [0]

ij + C [1]

ij + · · · , (3.10)

where the superscript [n] stands for the total power of fields χi involved. Then, the lowest-

order part of the closure condition (3.1) reads simply
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η δ[1]

ε = δ[0]
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. (3.11)

At the next-to-lowest order, it gives
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+ δ[0]

[η,ε][1]
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ij (η, ε)
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δχi

δ

δχj
. (3.12)

Restricting gauge parameters to Killing fields, the above two conditions (3.11) and (3.12)

provide simple but important consistency requirements for the theory. The Killing fields ε̄

are defined by the solutions of the Killing equations:

δ[0]
ε̄ = 0 . (3.13)

The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second

condition (3.12) reduces to

δ[1]
ε̄ δ[1]

η̄ − δ[1]
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ε̄ = δ[1]

[[η̄,ε̄]] + δ[0]

[η̄,ε̄][1]
+C [0]

ij (η̄, ε̄)
δS [2]

δχi

δ

δχj
, (3.15)

meaning that δ[1]
ε̄ provides a representation of the Lie algebra of the global symmetries on

the space of fields.

Having the above general lessons in mind, let us come back to the PM plus gravity

theory and consider the dS metric gµν = ḡµν and ϕµν = 0 as the background. The global

symmetries of this background are the subset of gauge symmetries which leave it invariant.

The gauge parameters of the global transformations are defined as the solutions of the

following Killing equations:

[

δξ̄ gµν
]

bg
= 2 ∇̄(µξ̄ν) = 0 ,

[

δᾱ ϕµν

]

bg
=

(

∇̄µ∇̄ν +
Λ

3
ḡµν

)

ᾱ = 0 , (3.16)
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Z
↵L1(h, h, h) + � L2(h,',') + � L3(',',')
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With (3.27) and (3.28), we are ready to compute the LHS of eq. (3.15), which is the

commutator between two PM transformations.5 After straightforward calculations and

imposing the global symmetry condition on gauge parameters, we obtain the commutator

of two PM transformations as

(

δ[1]
ᾱ1

δ[1]
ᾱ2

− δ[1]
ᾱ2

δ[1]
ᾱ1

)

hµν = 2 ∇̄(µAρ hν)ρ +Aρ ∇̄ρhµν + 2 ∇̄(µBν) ,
(

δ[1]
ᾱ1

δ[1]
ᾱ2

− δ[1]
ᾱ2

δ[1]
ᾱ1

)

ϕµν = 2 ∇̄(µAρ ϕν)ρ +Aρ ∇̄ρϕµν + (λ2 + σκ) Cµν , (3.29)

where Aµ , Bµ and Cµν are given by

Aµ = 2σ κ
Λ

3
ᾱ[1 ∂µᾱ2] , (3.30)

Bµ = −2σ κ

[

∂ρ ᾱ[1 ∂
σᾱ2] (∇̄ρhσµ − 4σ λ ∇̄ρϕσµ) +

2Λ

3
ᾱ[1 ∂

ρᾱ2] hρµ

]

, (3.31)

Cµν = 4 ∂ρα[1 ∂
σα2] ∇̄(µ|∇̄σϕ|ν)ρ + 4Λα[1∂

ρα2](∇̄(µϕν)ρ − ∇̄ρϕµν) . (3.32)

Let us analyze each term in (3.29) to see whether they are compatible with the RHS of

eq. (3.15):

• First, the terms involving Aµ in (3.29) take the form of a Lie derivative. Moreover

one can show that the form (3.30) of Aµ coincides with the bracket (3.17):

Aµ ∂µ = [[ ᾱ2 , ᾱ1 ]] . (3.33)

Hence, these terms correspond to the δ[1]

[[ ᾱ2 ᾱ1]]
contribution in the RHS of eq. (3.15).

• Second, the terms involving Bµ in (3.29) take the form of linearized diffeomorphism,

hence corresponding to the δ[0]

[ ᾱ2 ᾱ1][1]
contribution in the RHS of eq. (3.15) with

[ ᾱ2 , ᾱ1 ]
[1] = Bµ ∂µ . (3.34)

The above relation can be explicitly checked by extracting δ[2]
α hµν from eq. (2.18).

• Finally, there remains the Cµν term in (3.29), which does not correspond to any of the

contributions in the RHS of eq. (3.15). Therefore, in order the admissibility condition

to be satisfied, we must require that the coefficient of the Cµν term vanishes:

λ2 + σ κ = 0 . (3.35)

This determines the coupling constant λ for the PM self-interaction in terms of the

gravitational constant κ = 8πGN as λ = ±
√
−σ κ . Now one has two options de-

pending on the relative sign σ between the kinetic terms:

– when σ = −1, we get λ = ±
√
κ which coincides with the coupling constant of

the PM self-interaction in CG;

5One can examine also the other commutators, but they do actually satisfy the admissibility condition

(3.15) without constraining any coupling constant.
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3.2 Lie algebra of global symmetries

Once we get the field-independent part of the gauge-algebra brackets, it is already sufficient

to fully determine the global-symmetry structure constants. Similarly to the gauge sym-

metries, the global-symmetry transformations must be closed; what is more is that they

must also form a Lie algebra. Hence, this point — whether the brackets indeed satisfy the

Jacobi identity and define a Lie algebra — provides us with a simple necessary condition

for the consistency of the theory.

In order to see this point more clearly, let us briefly move back to the general discussions

presented at the beginning of section 3. We shall now analyze the closure of the symmetry

algebra perturbatively. One considers the expansions:

S = S [2] + S [3] + · · · , δε = δ[0]
ε + δ[1]

ε + · · · ,

[η, ε] = [η, ε][0] + [η, ε][1] + · · · , Cij = C [0]

ij + C [1]

ij + · · · , (3.10)

where the superscript [n] stands for the total power of fields χi involved. Then, the lowest-

order part of the closure condition (3.1) reads simply

δ[0]
ε δ[1]

η − δ[0]
η δ[1]

ε = δ[0]

[η,ε][0]
. (3.11)

At the next-to-lowest order, it gives

δ[1]
ε δ[1]

η − δ[1]
η δ[1]

ε + δ[0]
ε δ[2]

η − δ[0]
η δ[2]

ε = δ[1]

[η,ε][0]
+ δ[0]

[η,ε][1]
+ C [0]

ij (η, ε)
δS [2]

δχi

δ

δχj
. (3.12)

Restricting gauge parameters to Killing fields, the above two conditions (3.11) and (3.12)

provide simple but important consistency requirements for the theory. The Killing fields ε̄

are defined by the solutions of the Killing equations:

δ[0]
ε̄ = 0 . (3.13)

The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second

condition (3.12) reduces to

δ[1]
ε̄ δ[1]

η̄ − δ[1]
η̄ δ[1]

ε̄ = δ[1]

[[η̄,ε̄]] + δ[0]

[η̄,ε̄][1]
+C [0]

ij (η̄, ε̄)
δS [2]

δχi

δ

δχj
, (3.15)

meaning that δ[1]
ε̄ provides a representation of the Lie algebra of the global symmetries on

the space of fields.

Having the above general lessons in mind, let us come back to the PM plus gravity

theory and consider the dS metric gµν = ḡµν and ϕµν = 0 as the background. The global

symmetries of this background are the subset of gauge symmetries which leave it invariant.

The gauge parameters of the global transformations are defined as the solutions of the

following Killing equations:

[

δξ̄ gµν
]

bg
= 2 ∇̄(µξ̄ν) = 0 ,

[

δᾱ ϕµν

]

bg
=

(

∇̄µ∇̄ν +
Λ

3
ḡµν

)

ᾱ = 0 , (3.16)
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Admissibility condition

S[3] =

Z
↵L1(h, h, h) + � L2(h,',') + � L3(',',')
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With (3.27) and (3.28), we are ready to compute the LHS of eq. (3.15), which is the

commutator between two PM transformations.5 After straightforward calculations and

imposing the global symmetry condition on gauge parameters, we obtain the commutator

of two PM transformations as

(

δ[1]
ᾱ1

δ[1]
ᾱ2

− δ[1]
ᾱ2

δ[1]
ᾱ1

)

hµν = 2 ∇̄(µAρ hν)ρ +Aρ ∇̄ρhµν + 2 ∇̄(µBν) ,
(

δ[1]
ᾱ1

δ[1]
ᾱ2

− δ[1]
ᾱ2

δ[1]
ᾱ1

)

ϕµν = 2 ∇̄(µAρ ϕν)ρ +Aρ ∇̄ρϕµν + (λ2 + σκ) Cµν , (3.29)

where Aµ , Bµ and Cµν are given by

Aµ = 2σ κ
Λ

3
ᾱ[1 ∂µᾱ2] , (3.30)

Bµ = −2σ κ

[

∂ρ ᾱ[1 ∂
σᾱ2] (∇̄ρhσµ − 4σ λ ∇̄ρϕσµ) +

2Λ

3
ᾱ[1 ∂

ρᾱ2] hρµ

]

, (3.31)

Cµν = 4 ∂ρα[1 ∂
σα2] ∇̄(µ|∇̄σϕ|ν)ρ + 4Λα[1∂

ρα2](∇̄(µϕν)ρ − ∇̄ρϕµν) . (3.32)

Let us analyze each term in (3.29) to see whether they are compatible with the RHS of

eq. (3.15):

• First, the terms involving Aµ in (3.29) take the form of a Lie derivative. Moreover

one can show that the form (3.30) of Aµ coincides with the bracket (3.17):

Aµ ∂µ = [[ ᾱ2 , ᾱ1 ]] . (3.33)

Hence, these terms correspond to the δ[1]

[[ ᾱ2 ᾱ1]]
contribution in the RHS of eq. (3.15).

• Second, the terms involving Bµ in (3.29) take the form of linearized diffeomorphism,

hence corresponding to the δ[0]

[ ᾱ2 ᾱ1][1]
contribution in the RHS of eq. (3.15) with

[ ᾱ2 , ᾱ1 ]
[1] = Bµ ∂µ . (3.34)

The above relation can be explicitly checked by extracting δ[2]
α hµν from eq. (2.18).

• Finally, there remains the Cµν term in (3.29), which does not correspond to any of the

contributions in the RHS of eq. (3.15). Therefore, in order the admissibility condition

to be satisfied, we must require that the coefficient of the Cµν term vanishes:

λ2 + σ κ = 0 . (3.35)

This determines the coupling constant λ for the PM self-interaction in terms of the

gravitational constant κ = 8πGN as λ = ±
√
−σ κ . Now one has two options de-

pending on the relative sign σ between the kinetic terms:

– when σ = −1, we get λ = ±
√
κ which coincides with the coupling constant of

the PM self-interaction in CG;

5One can examine also the other commutators, but they do actually satisfy the admissibility condition

(3.15) without constraining any coupling constant.
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3.2 Lie algebra of global symmetries

Once we get the field-independent part of the gauge-algebra brackets, it is already sufficient

to fully determine the global-symmetry structure constants. Similarly to the gauge sym-

metries, the global-symmetry transformations must be closed; what is more is that they

must also form a Lie algebra. Hence, this point — whether the brackets indeed satisfy the

Jacobi identity and define a Lie algebra — provides us with a simple necessary condition

for the consistency of the theory.

In order to see this point more clearly, let us briefly move back to the general discussions

presented at the beginning of section 3. We shall now analyze the closure of the symmetry

algebra perturbatively. One considers the expansions:

S = S [2] + S [3] + · · · , δε = δ[0]
ε + δ[1]

ε + · · · ,

[η, ε] = [η, ε][0] + [η, ε][1] + · · · , Cij = C [0]

ij + C [1]

ij + · · · , (3.10)

where the superscript [n] stands for the total power of fields χi involved. Then, the lowest-

order part of the closure condition (3.1) reads simply

δ[0]
ε δ[1]

η − δ[0]
η δ[1]

ε = δ[0]

[η,ε][0]
. (3.11)

At the next-to-lowest order, it gives
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η δ[1]

ε + δ[0]
ε δ[2]
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η δ[2]

ε = δ[1]

[η,ε][0]
+ δ[0]

[η,ε][1]
+ C [0]

ij (η, ε)
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δχi

δ

δχj
. (3.12)

Restricting gauge parameters to Killing fields, the above two conditions (3.11) and (3.12)

provide simple but important consistency requirements for the theory. The Killing fields ε̄

are defined by the solutions of the Killing equations:

δ[0]
ε̄ = 0 . (3.13)

The first condition (3.11) becomes

δ[0]

[η̄,ε̄][0]
= 0 , (3.14)

meaning that the global symmetry is closed under the bracket [[η̄, ε̄]] := [η̄, ε̄][0] . The second

condition (3.12) reduces to
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ε̄ δ[1]
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[η̄,ε̄][1]
+C [0]

ij (η̄, ε̄)
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δχi

δ

δχj
, (3.15)

meaning that δ[1]
ε̄ provides a representation of the Lie algebra of the global symmetries on

the space of fields.

Having the above general lessons in mind, let us come back to the PM plus gravity

theory and consider the dS metric gµν = ḡµν and ϕµν = 0 as the background. The global

symmetries of this background are the subset of gauge symmetries which leave it invariant.

The gauge parameters of the global transformations are defined as the solutions of the

following Killing equations:

[

δξ̄ gµν
]

bg
= 2 ∇̄(µξ̄ν) = 0 ,

[

δᾱ ϕµν

]

bg
=

(

∇̄µ∇̄ν +
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)
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With (3.27) and (3.28), we are ready to compute the LHS of eq. (3.15), which is the

commutator between two PM transformations.5 After straightforward calculations and

imposing the global symmetry condition on gauge parameters, we obtain the commutator

of two PM transformations as

(

δ[1]
ᾱ1

δ[1]
ᾱ2

− δ[1]
ᾱ2

δ[1]
ᾱ1

)

hµν = 2 ∇̄(µAρ hν)ρ +Aρ ∇̄ρhµν + 2 ∇̄(µBν) ,
(

δ[1]
ᾱ1

δ[1]
ᾱ2

− δ[1]
ᾱ2

δ[1]
ᾱ1

)

ϕµν = 2 ∇̄(µAρ ϕν)ρ +Aρ ∇̄ρϕµν + (λ2 + σκ) Cµν , (3.29)

where Aµ , Bµ and Cµν are given by

Aµ = 2σ κ
Λ

3
ᾱ[1 ∂µᾱ2] , (3.30)

Bµ = −2σ κ

[

∂ρ ᾱ[1 ∂
σᾱ2] (∇̄ρhσµ − 4σ λ ∇̄ρϕσµ) +

2Λ

3
ᾱ[1 ∂

ρᾱ2] hρµ

]

, (3.31)

Cµν = 4 ∂ρα[1 ∂
σα2] ∇̄(µ|∇̄σϕ|ν)ρ + 4Λα[1∂

ρα2](∇̄(µϕν)ρ − ∇̄ρϕµν) . (3.32)

Let us analyze each term in (3.29) to see whether they are compatible with the RHS of

eq. (3.15):

• First, the terms involving Aµ in (3.29) take the form of a Lie derivative. Moreover

one can show that the form (3.30) of Aµ coincides with the bracket (3.17):

Aµ ∂µ = [[ ᾱ2 , ᾱ1 ]] . (3.33)

Hence, these terms correspond to the δ[1]

[[ ᾱ2 ᾱ1]]
contribution in the RHS of eq. (3.15).

• Second, the terms involving Bµ in (3.29) take the form of linearized diffeomorphism,

hence corresponding to the δ[0]

[ ᾱ2 ᾱ1][1]
contribution in the RHS of eq. (3.15) with

[ ᾱ2 , ᾱ1 ]
[1] = Bµ ∂µ . (3.34)

The above relation can be explicitly checked by extracting δ[2]
α hµν from eq. (2.18).

• Finally, there remains the Cµν term in (3.29), which does not correspond to any of the

contributions in the RHS of eq. (3.15). Therefore, in order the admissibility condition

to be satisfied, we must require that the coefficient of the Cµν term vanishes:

λ2 + σ κ = 0 . (3.35)

This determines the coupling constant λ for the PM self-interaction in terms of the

gravitational constant κ = 8πGN as λ = ±
√
−σ κ . Now one has two options de-

pending on the relative sign σ between the kinetic terms:

– when σ = −1, we get λ = ±
√
κ which coincides with the coupling constant of

the PM self-interaction in CG;

5One can examine also the other commutators, but they do actually satisfy the admissibility condition

(3.15) without constraining any coupling constant.
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↵ = 1

❖Admissibility condition fixes � ↵2 + �2 = 0

• When             , no solution for real � = +1 ↵, �

➡No PM limit of Bi-gravity

• When             , we recover Conformal Gravity � = �1


